LEON3开源软核处理器动态图像边缘检测SoC设计

时间:2015-05-09来源:网络

  ①系统时钟与复位信号:是整个LEON3架构所共用的时钟信号和复位信号,而iCLK_50是由外部直接引入的频率为50MHz的时钟,未经过PLL处理。

  ②IP核控制信号:主要实现IP核的触发功能和结束功能。

  ③APB总线的输入信号和输出信号:此信号主要用于APB总线控制、IP核选择、IP核使能等,其中包括对IP核内部寄存器的设置都是通过APB总线信号来完成的。

  ④D5M摄像头输入信号和输出信号:此信号主要完成对D5M摄像头的配置以及数据采集。

  ⑤LTM显示器输入信号和输出信号:此信号用于对LTM显示器的配置。由于基于APB总线的IP核集成D5M摄像头、LTM显示器和边缘检测算法于一体,所以外部接口信号相对较多。但就APB总线本身而言,其信号并不多,这也是基于APB总线的设计方法相对简单的原因。

  3.3自定义IP核的结构设计

  有关“基于APB外围低速总线图像检测IP核的实现基本思想部分”略——编者注。

  基于APB总线的IP核框架结构如图5所示。

  

 

  图5用户定义图像边缘检测lP核结构

  4实验结果

  4.1动态图像边缘检测算法硬件实现仿真与分析

  文中首先利用Matlab验证局域熵边缘检测算法设计的正确性,然后采用Verilog HDL硬件描述语言编写图像边缘检测算法,在算法实现过程中,为提高算法的性能,采用了Quartus II中自带的DSP加速宏模块。同时,为验证仿真算法的正确性,编写Testbench系统测试文件,对其进行仿真验证,图6为局域熵边缘检测算法的硬件仿真时序图。

  

 

  图6局域熵边缘检测算法硬件实现仿真时序图

  从图6中,可以看到3×3窗口产生的过程,L1~L3为采用片上缓存的方法实现的三行数据的同步。X1~X9对应3×3窗口中的9个像素点。图中最终的数据输出是有一定时延的,这是由于算法中存在大量的乘加运算和浮点数运算造成的。

  在实现算法的同时,考虑到所选芯片提供了可用于加速算术运算的DSP模块,于是为了加速算法的处理速度,在算法实现过程中,加入了大量的DSP加速处理模块,如乘加器,浮点除法器等。表1给出了用硬件语言实现上述算法所使用的芯片资源情况。表2给出了该算法对DSP加速模块的使用情况。

  

1 2 3 4

关键词: SoC LEON3

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版