基于MCU和nRF24L01的无线通信系统设计
随着微电子技术的迅速发展,高性能MCU广泛地运用在嵌入式系统中,完成数据的采集、分析、处理与通讯功能。有线模式下的数据通讯系统,由于受时空、环境等因素的制约,不能完全满足所有条件下任务的执行,而通过无线数据传输方式代替有线数据传输,则能很好地解决此类问题。综上论述,文中提出一种基于高性能MCU和nRF24L01的网络化无线通信系统的解决方案,稳定可靠地实现数据传输,满足各种条件的需要。
1 系统硬件设计
1.1 nRF24L01无线通讯模块介绍
系统选用云佳科技的nRF24L01无线射频收发模块来实现子母机间的通讯,它使用Nordic公司的nRF24L01芯片开发而成,是一款工作在2.4~2.5 GHz世界通用ISM频段的单片无线收发器芯片,其具有如下性能特点:
(1)低工作电源电压,且范围广1.9~3.6 V,体积小巧,能方便集成到各种电子器件。
(2)极低的功耗。当工作在发射模式下发射功率为-6 dBm时电流消耗为9 mA,接收模式时为12.3 mA。待机模式下电流消22μA,掉电模式电流消耗仅为900 nA。
(3)无线速率达到2 Mbit·s-1,SPI接口速率为0~8 Mbit·s-1,具自动应答机制,极大地降低丢包率。
(4)拥有自动重发功能、地址及CRC校验功能。
(5)具有125个可选工作频道,拥有很短的频道切换时间,可用于跳频。
nRF24L01引脚封装如图1所示。
1.2 STC12L5608AD芯片简介
STC12L5608AD型MCU是宏晶科技新一代低电压增强型8051单片机,该系列单片机具有如下特性:宽工作电压(2.1~3.6 V);具有1个时钟/机器周期的高速性能,比普通8051快8~12倍,可用低频晶振;自带-8路10位AD转换器等;加密性强,无法解密;超强抗干扰、高抗静电、轻松过4 kV快速脉冲干扰(EFT测试)、宽温度范围(-40~85℃);超低功耗,正常工作模式2.7~7 mA,空闲模式1.8mA,掉电模式功耗<0.1μA;能在系统编程等。
1.3 硬件接口电路
nRF24L01通过SPI接口与外部单片机进行数据交换,CE作为片选端,它与CONFIG寄存器的PWR_UP和PRIM_RX位组合用于选择芯片的工作方式;CSN为芯片内部SPI硬件接口的使能端,低电平有效;SCK为SPI的时钟输入端,MOSI为SPI接口的数据输入端,MISO为SPI接口的数据输出端,IRQ为中断请求端,与单片机的外部中断1相连,当nRF24L01产生中断后IRQ将置低,单片机检测到此中断后通过程序得知其与nRF24L01无线射频模块的数据收发情况。通过单片机与无线通讯模块的硬件连接,从而实现模式控制和数据交换。图2给出两模块的硬件接口设计。整个无线通讯系统由3个模块组成。
2 系统软件设计
2.1 数据包处理方式
将nRF24L01配置成增强型ShockBurst模式,使得双向链接协议执行更为简易有效。发送方要求终端设备在接收数据后有应答信号,以便发送方检测有无数据丢失。一旦数据丢失则通过重新发送功能将丢失的数据恢复。它可以同时控制应答及重发功能而无需增加MCU工作量。nR F24L01配置为增强型的ShockBurst发送模式下时,只要MCU有数据要发送,nRF24L01就会启动ShockBurst模式来发送数据。在发送完数据后nRF24L01转到接收模式并等待终端的应答信号。如未收到应答信号,nRF24L01将重发相同的数据包,直到收到应答信号或重发次数超过SETUP _RETR_ARC寄存器中设置的值为止。如果重发次数超过了设定值,则产生MAX_RT中断。只要收到确认信号,nRF24L01就认为最后一包数据已经发送成功,把TX FIFO中的数据清除掉并产生TX_DS中断,IRQ引脚置高。
nRF24L01在接收模式下可以接收6路不同通道的数据,如图3所示。每个数据通道使用不同的地址,但共用相同的频道。即6个不同的nRF 24L01设置为发送模式后,可以与同一个设置为接收模式的nRF24L01进行通讯,而设置为接收模式的nRF24L01可以对这6个发射端进行识别。n RF24L01在确认收到数据后记录地址,并以此地址为目标地址发送应答信号。在发送端,数据通道0被用作接收应答信号。
2.2 系统软件设计流程
图4为子模块和主模块程序设计流程图,软件开发环境为KeilC uVision3。
加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW
或用微信扫描左侧二维码