8通道TD-LTE系统研究
如前所述,在LTE系统中对系统的时延情况提出了更加严格的要求:
●显著降低控制面时延:100ms:LTE_Idle→LTE_Active;50ms:Dormant→Active 50ms。
●用户面时延:定义为UE或RAN边缘节点IP层包数据至RAN边缘节点或UE IP层包数据的单项传输时间。
●需求:5ms(无负载IP包的情况下,需要后续补充定义)。
为了满足如上要求,除空中接口无线帧长度的变化和TTI等变化以缩短空中接口的延迟之外,还需要对网络结构进行演进,尽量减少多余节点,从而减少网络中的传输时延。但不管结构如何演变,无线接入网与核心网仍然遵循各自发展的原则,空中接口终止在无线接入网中。因此,无线接入网与核心网的逻辑关系仍然存在,无线接入网与核心网的接口也依然明晰。
基于上述背景,LTE系统在基本技术上一开始就选择了OFDM,MIMO和智能天线等技术作为基本物理层技术并且保留了FDD和TDD两种制式的LTE技术。下面我们就这两种制式的一些共性和差异作进一步的分析。
2 相同条件下FDD与TDD频谱效率相当
LTE FDD与LTE TDD(即TD-LTE)系统基本帧结构差异本文不作分析。就基本帧结构而言,TDD系统保留了从TD-SCDMA系统设计而来的3个特殊时隙,并且为了适应无线帧的融合,还设计了不同的上/下行时隙配比和特殊时隙的不同符号数配比。就频谱效率而言,通过我们的仿真结果可以表明,两者基本相当。
仿真条件:
●网络模型:19X3。
●频段及载波带宽2GHz,BW 20MHz。
●传播环境:Urban Macro。
●链路模型:SCM-E,3km/h。
●基站发射功率:PBS_max :46dBm。
●TDD配置:TDD UL:DL,2:2;Special Frame:10:2:2。
●终端发射功率:PUE_Max:23Bm。
●终端高度:1.5m。
●下行:Scheme: rank1/rank2自适应调整;No Power Control。
●
加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW
或用微信扫描左侧二维码