用旋转流变仪测量聚合物的流变性能

时间:2013-03-19来源:网络


2、聚合物的重均分子量和分子量分布定性判断

在频率扫描分析中,对重均分子量和分子量分布的定性分析可以从储能模量和损耗模量的交点做出判断。一般,该实验大约需要5~10min。研究模量交叉点Gx的水平位置可以定性分析平均分子量,Gx的垂直位置则说明了分子量的分布MMD。另外,比较同类聚合物,支化程度也和Gx的水平偏移有关(如图3所示)。

newmaker.com
图3 用储能和损耗模量的交点来进行分子量的定性分析

3、重均分子量和分子量分布的定量表征

通过不同温度下的频率扫描、应力松弛和蠕变实验,可以计算主曲线, 从而计算松弛时间谱。对于已知材料参数的聚合物(如PS、PE、PP、PC、PMMA和PTFE等),利用聚合物分析软件包即可以方便地定量计算出重均分子量和分子量的分布(如图4、图5所示)。

newmaker.com
图4 聚合物分析模块

newmaker.com
图5 用流变学方法计算的聚合物分子量及其分布

相比凝胶色谱法(GPC)进行的分子量分析,这种方法不需使用任何溶剂。无论聚合物是颗粒状、粉末状还是片状,都可以被直接放到测量单元上。因此,分子量或者分子量分布的分析不像凝胶色谱法(GPC)那样受到太多条件的限制。

4、支化聚合物

一般,侧链的数量、长度和移动性均影响流变性能。如果侧链不长,会导致低剪切速率下粘度的增加。与相应的线性聚合物相比,其剪切稀化效应更明显。而对于长支化的聚合物,在低剪切速率下将显示低粘度。所以,可以通过控制支化度来控制产品的性能。

聚合物的支化度通常可以采用拉伸实验进行分析。具有优异控制速率性能的旋转流变仪,如奥地利安东帕有限公司的Physica MCR301,可以配置熔体拉伸模具,直接测量聚合物的拉伸性能,从而反映出样品支化度的差异。对于这种差异,通常采用的旋转测试的流动曲线或者振荡的频率扫描曲线是很难分辨出来的。

图6所示描述了支化聚丙烯(B-PP)和高规整线性聚丙烯(H-PP)的差异。两种聚丙烯的熔融指数MI都是3,粘度曲线也基本一致。在一定的拉伸应力下,两种聚丙烯的分子结构表现出了明显的差异。其中,支化聚丙烯(B-PP)表现出了明显的支化效应和拉伸变硬(如图6a所示),而高规整线性聚丙烯(H-PP)的拉伸粘度无明显增大(如图6b所示)。

newmaker.com
图6 在不同拉伸速率下,支化聚丙烯和线性聚丙烯的拉伸流变测试

5、填料的影响

填料也会影响最终产品的性能,其中填料的尺寸、形态、填充量和颗粒之间的相互作用是重要的影响因素。填料往往导致熔体粘度增加或挤出胀大效应减小。从流变的观点看,随着填充物含量的增加,聚合物的线性粘弹区范围就变小。线性粘弹区一般可用振幅或者应变扫描来测定。
1 2 3

关键词: 旋转流变仪 聚合物 流变性能

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版