浅谈如何利用光耦合器提高PV逆变器的性能

时间:2013-10-09来源:网络
x/25px 宋体, arial; TEXT-TRANSFORM: none; COLOR: rgb(0,0,0); TEXT-INDENT: 0px; PADDING-TOP: 0px; WHITE-SPACE: normal; LETTER-SPACING: normal; webkit-text-size-adjust: auto; orphans: 2; widows: 2; webkit-text-stroke-width: 0px">  图3为光耦合器的内部方块图。驱动器每一部分,皆由一个普通电源或偏压电源供电。启动过程中,第一次打开电源时,电路的复杂性会造成延迟,这会造成闸极输出随着VDD电源而不断提高;它会不断上升,直到电源稳定。然后,一旦偏置电压正确,闸极驱动器输出就返回由发光二极体(LED)控制的正确状态。

  浅谈如何利用光耦合器提高PV逆变器的性能

  图3 光耦合器方块图

  设定好电源开启的顺序,可儘量减小等待光耦合器偏压电源稳定所造成的影响。太阳能逆变器通常有叁个电源,一个逻辑电源(3.3、5或10V)、光耦合器电源,以及一个高压电源对MOSFET/IGBT供电。按照电源排列顺序依次开启,首先逻辑电源,然后光耦合器电源,最后是MOSFET/IGBT电源。如此一来,有助于抵消稳定偏压电源造成的影响。这样的开启顺序,亦满足逻辑控制的上电復位(Power-on Reset)和隔离驱动器电源的靴带式(Boostrap)充电时间。

  对于LED驱动器,正向电流峰值IF《1A(1微秒(μs),300pps)。建议的工作电流是10?16毫安培(mA)。电流上升时间小于250奈秒(ns),这样的特性可儘量降低传输延时,并减少输出开关抖动。

  高增益(23dB)、高功率输出的光学放大器,需要一个超过直流範围,高达40MHz的低阻抗电源;使用低ESR旁路电容和讯号地平面,可协助降低自发电源杂讯,并防止输出上升和下降时间的消煺。

  共模抑制为衡量杂讯指标

  高频瞬变为杂讯的一种,可能会损坏光耦合器的隔离屏障的资料传输。CMR係对光耦合器抵御瞬变杂讯能力的衡量标準。CMR为衡量光耦合器性能的最重要指标之一,其他指标还有隔离等级和工作电压等。

  八接脚DIP共面(Coplanar)结构的光耦合器,可提供输出电容高电介质(Dielectric)绝缘和低输入。八接脚DIP封装允许大于8毫米(mm)的沿面和间隙距离及0.5mm绝缘距离,以实现可靠的高电压绝缘。

  因此,闸极驱动器光耦合器解决方案,可提供更多的绝缘安全缓衝区,而电容性或电感式解决方案的绝缘距离不到0.1mm。如此一来,优化安全并降低杂讯耦合。这装置採用共面光学耦合技术,以阻挡由负载切换产生的电子杂讯所引起的干扰。而且还有一个特殊电光学遮罩,可降低开关瞬态和光耦合器的主动电路之间发生电容耦合的机率。

  一般240V交流电源转换器会产生800V开关瞬态,以及大于6kV/μs的转动率。此大幅度的瞬态,会导致3mA峰值电流于输入和输出之间流动(用于CIO只有0.5皮法(pF)的隔离设备时)。图4显示一则範例,一个电容耦合了耦合器的输入和输出之间的杂讯电流。

  浅谈如何利用光耦合器提高PV逆变器的性能

  图4 电流模式抑制LED「OFF」

  共模瞬变具有负的电压摆动率,与耦合器的输出接地(GND2)引用一样;该瞬态可将耦合器的输出牵引到输出;包电容(Package Capacitance)即CIO,提供输入和输出之间的主要耦合阻抗;当LED关闭时,闸极的输出为低状态;如果有充裕的共模电流iCM从输入端牵引到光学放大器,放大器则会开启。

  杂讯电流iCM为极小,因为有特殊共模遮罩可阻挡电子遮罩变化造成的影响,该遮罩会最小化流入或流出光学放大器的耦合,将有效的共模耦合电容限制到小于50pF。如此一来,光耦合器能轻鬆抑制最大幅度为1.5kV放入正或负的共模瞬变,以及超过15kV/μs的转动率。

  当通过LED,IF的控制电流等于10mA时,驱动器输出电流为高,源电流流向负载。正dv/dt会从放大器中牵引出电流,增强光电流;负dv/dt会将电流引向放大器,抵销光电流,并可能导致放大器

1 2 3

关键词: 光耦合器 PV逆变器

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版