基于GPS的恒温晶振频率校准系统的设计与实现

时间:2013-08-28来源:网络

摘要:针对目前广泛对高精度频率源的需求,利用FPGA设计一种恒温晶振频率校准系统。系统以GPS接收机提供的秒脉冲信号为基准源,通过结合高精度恒温晶振短期稳定度高与GPS长期稳定特性好、跟踪保持特性强的优点,设计数字锁相环调控恒温晶振的频率。详细阐述系统的设计原理及方法,测试结果表明,恒温晶振的频率可快速被校准到10 MHz,频率偏差小于0.01Hz,具有良好的长期稳定性,适合在多领域中作为时间频率的标准。
关键词:频率校准;恒温晶振;数字锁相环;FPGA

时钟技术在现代科学技术中有着广泛的应用,许多领域对时间指标的要求越来越高,如电力、通讯、军事、航空航天等,都需要高精度的同步时钟作为参考,协调整个系统的正常运行。GPS是目前世界上应用范围最广、实用性最强的全球精密授时、测距和导航定位系统。高精度频标目前主要有铷钟、铯钟、氢钟等原子钟以及高精度晶体振荡器。其中,高精度晶体振荡器以其使用寿命长、价格较为便宜等优点,获得了广泛应用,但是晶体振荡器会由于温度、老化等因素产生频率的漂移,长期稳定性较差。为了获得一个短期及长期稳定度都比较优良的时间频率标准,本系统以授时型GPS秒信号为参考,通过数字锁相环对高稳晶振的频率进行控制与修正,此方法具有便携、廉价等优势。

1 GPS接收机测试及恒温晶振选型
1.1 GPS接收机测试
系统选用并行12通道,正常接收卫星时,秒脉冲(1PPS)时间精度优于100 ns,并且输出与秒脉冲完全同步的10 kHz信号的Jupiter授时型GPS接收机。由于天线角度、电离层、对流层、多径效应、接收机自身特性的影响,GPS会产生失锁或者虽然锁定但秒信号抖动较大,此时测得的时差数据有很大的噪声分量。在同一地点,当两台Jupiter授时型GPS接收机都正常接收卫星时,连续10小时以一台GPS的1PPS作为基准,对比另一台GPS的1PPS到达时刻,绘出到达时间差的柱状统计图,从图1中可得出,两台GPS接收机正常运行时,两个1PIPS信号的时间差99%以上集中在0~100 ns之间,时间差的均值是54 ns,主要是由GPS天线引起;计算出均方差为7.64 ns,可以看出两台Jupiter GPS接收机的1PPS信号一致性很高,抖动较小。但是对于随机误差引起的1PPS跳变或者GPS接收机偶然锁星失败,虽然也输出1PPS信号,但其精度较低不能作为基准源。

a.JPG


1.2 恒温晶振选型
GPS接收机输出的1PPS信号存在较大的随机误差,但是没有累计误差,而恒温晶振时钟信号的随机误差较小,不过由于自身老化和外界温度等一些因素的影响,存在频率漂移现象,具有较大的累计误差。如果恒温晶振长期不问断的运行,频率无法满足工作所需的准确度与稳定度,因此需要通过实时的自动调控压控端电压来进行频率校准。根据卫星时钟信号和恒温晶振时钟信号精度互补这一特点,通过调控恒温晶振的压控端,使其输出频率随之改变,以维持短期和长期的时间精度和稳定性。
恒温晶振选用俄罗斯莫里恩(Motion)公司的低漂移、低相噪薄型双恒温槽超精密恒温晶体振荡器OCXO MV180。该恒温晶振输出标准频率为10 MHz的正弦波,短期稳定度小于2x10-12/秒,年老化率为±1×10-8/年,对周围环境变化敏感度低,长期温度-频率稳定度可达±1× 10-10,还提供了一个直流电压控制端。通过向压控端施加一个0~+5 V的直流电压,可使该恒温晶振有±5 Hz左右的频率调整范围,控制电压与晶振频率的近似关系如表1所示。

b.JPG


1 2 3

关键词: GPS 恒温晶振 频率校准 系统

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版