GPS技术基础及GPS接收器测试(上)

  作者:不爱吃窝瓜 时间:2015-06-24

概况

从波音747客机的导航操作、汽车驾驶每天都会使用的GPS导航系统,到寻宝者要找到深藏于森林某处的宝藏,GPS技术已经迅速融入于多种应用中。

正当创新技术不断提升GPS接收器效能的同时,相关的技术特性亦越来越完整。时至今日,软件甚至可建立GPS波形,以精确仿真实际的信号。除此之外,仪器总线技术亦不断提升,目前即可透过PXI仪控功能,以记录并播放实时的GPS信号。

介绍

由于GPS技术已于一般商用市场逐渐普及,因此多项设计均着眼于提升相关特性,如:

1)降低耗电量

2)可寻找微弱的卫星信号

3)较快的撷取次数

4)更精确的定位功能

透过此应用说明,将可了解进行多项GPS接收器测量的方法:灵敏度、噪声系数、定位精确度、首次定位时间,与位置误差。此篇技术文件是要能让工程师彻底了解GPS的测量技术。对刚开始接触GPS接收器测量作业的工程师来说,可对常见的测量作业略知一二。若工程师已具有GPS测量的相关经验,亦可透过此篇技术文件初步了解新的仪控技术。此篇应用说明将分为下列数个段落:

1.GPS技术的基础

2.GPS测量系统

3.常见测量概述

a.灵敏度

b.首次定位时间(TTFF)

c.定位精确度与重复性

d.追踪精确度与重复性

每个段落均将提供数项实作秘诀与技巧。更重要的是,读者可将自己的结果与GPS接收器获得的结果进行比较。透过自己的结果、接收器的结果,再搭配理论测量的结果,即可进一步检视自己的测量数据。

GPS导航系统介绍

全球定位系统(GPS)为空间架构的无线电导航系统,本由美国空军所研发。虽然GPS原是开发做为军事定位系统之用,却也对民间产生重要影响。事实上,您目前就可能在车辆、船舶,甚至移动电话中使用GPS接收器。GPS导航系统包含由24组卫星,均以L1与L2频带(Band)进行多重信号的传输。透过1.57542GHz的L1频带,各组卫星均产生1.023MchipsBPSK(二进制相位键移)的展频信号。展频序列则使用称为C/A(coarse acquisition)码的虚拟随机数(PN)序列。虽然展频序列为1.023Mchips,但实际的信号数据传输率为50Hz[1].在系统的原始布署作业中,一般GPS接收器可达20~30公尺以上的精确度误差。此种误差肇因于美国军方依安全理由所附加的随机频率误差所致。然而,此称为选择性可靠度(Selective availability)误差信号源,已于2000年5月2日取消。在今天,接收器的最大误差不超过5公尺,而一般误差已降至1~2公尺。

不论是L1或L2(1.2276GHz)频带,GPS卫星均会产生所谓的“P码”附属信号。此信号为10.23MbpsBPSK的调变信号,亦使用PN序列做为展频码。军方即透过P码的传输,进行更精确的定位作业。在L1频带中,P码是透过C/A码进行反相位(Outofphase)的90度传输,以确保可于相同载波上测得此2种信号码[2].P码于L1频带中可达-163dBW的信号功率;于L2频带中可达-166dBW.相对来说,若在地球表面的C/A码,则可于L1频带中达到最小-160dBW的广播功率。

GPS导航信号

针对C/A码来说,导航信号是由数据的25个框架(Frame)所构成,而每个框架则包含1500个位[2].此外,每组框架均可分为5组300个位的子框架。当接收器撷取C/A码时,将耗费6秒钟撷取1个子框架,亦即1个框架必须耗费30秒钟。请注意,其实某些较为深入的测量作业,才有可能真正花费30秒钟以撷取完整框架;我们将于稍后讨论之。事实上,30秒钟仅为撷取完整框架的平均最短时间;系统的首次定位时间(TTFF)往往超过30秒钟。

为了进行定位作业,大多数的接收器均必须更新卫星星历(Almanac)与星历表(Ephemeris)的信息。该笔信息均包含于人造卫星所传输的信号数据中,,而每个子框架亦包含专属的信息集。一般来说,我们可透过子框架的类别,进而辨识出其中所包含的信息[2][7]:

Sub-frame1:包含时序修正(Clock correction)、精确度,与人造卫星的运作情形

Sub-frame2-3:包含精确的轨道参数,可计算卫星的确实位置

Sub-frames4-5:包含粗略的卫星轨道数据、时序修正,与运作信息。

而接收器必须透过卫星星历与星历表的信息,才能够进行定位作业。一旦得到各组卫星的确实距离,则高阶GPS接收器将透过简单的三角表达式(Triangulation algorithm)回传位置信息。事实上,若能整合虚拟距离(Pseudorange)与卫星位置的信息,将可让接收器精确识别其位置。

不论是使用C/A码或P码,接收器均可追踪最多4组人造卫星,进行3D定位。追踪人造卫星的过程极为复杂,不过简单来说,即是接收器将透过每组卫星的距离,估算出自己的位置。由于信号是以光速(c),或为299,792,458m/s行进,因此接收器可透过下列等式计算出与人造卫星之间的距离,即称为“虚拟距离(Pseudorange)”:

等式1.“虚拟距离(Psedorange)”为时间间隔(Time interval)的函式[1][4]

接收器必须将卫星所传送的信号数据进行译码,才能够获得定位信息。每个卫星均针对其位置进行广播(Broadcasting),接收器跟着透过每组卫星之间的虚拟距离差异,以决定自己的确实位置[8].接收器所使用的三角测量法(Triangulation),可由3组卫星进行2D定位;4组卫星则可进行3D定位。

设定GPS测量系统

测试GPS接收器的主要产品,为1组可仿真GPS信号的RF矢量信号发生器。在此应用说明中,读者将可了解应如何使用NI PXI-5671与NI PXIe-5672RF矢量信号发生器,以达到测量目的。此产品并可搭配NI GPS工具组,以模拟1~12组GPS人造卫星。

完整的GPS测量系统亦应包含多种不同配件,以达最佳效能。举例来说,外接的固定式衰减器(Attenuator),可提升功率精确度与噪声层(Noise floor)的效能。此外,根据接收器是否支持其直接输入埠的DC偏压(Bias),某些接收器亦可能需要DC阻绝器(Blocker)。下图即为GPS信号产生的完整系统:



图1.GPS产生系统的程序图


如图1所示,当测试GPS接收器时,往往采用最高60dB的外接RF衰减(留白,Padding)。固定式衰减器至少可提供测量系统2项优点。首先,固定式衰减器可确保测试激发的噪声层低于-174dBm/Hz的热噪声层(Thermal noise floor)。其次,由于可透过高精确度RF功率计(Power meter)校准信号准位,因此固定式衰减器亦可提升功率精确度。虽然仅需20dB的衰减即可符合噪声层的要求,但若使用60~70dB的衰减,则可达到更高的功率精确度与噪声层效能。稍后将接着讨论RF功率校准,而图2抢先说明衰减对噪声层效能所造成的影响。



图2.不同衰减所需的仪器功率比较


如图2所示,衰减可用于减弱噪声,而不仅限于-174dBm/Hz的热噪声层。

RF矢量信号发生器

当选择RF矢量信号发生器时,NI abVIEW GPS工具组可同时支持NI PXI-5671与NI PXIe-5672RF矢量信号发生器。虽然此2款适配卡可产生GPS信号,但由于PCI Express总线速度较快,并可立刻进行IF等化(Equalization),因此NI PXIe-5672矢量信号发生器较受到青睐。此2款适配卡均具有6MB/s总数据传输率与1.5MS/s(IQ)取样率,可从磁盘串流GPS波形。

虽然PXI控制器硬盘可轻松维持此数据传输率,NI仍建议使用外接磁盘进行额外的储存容量。下图为包含NI PXIe-5672的常见PXI系统:



图3.包含NIPXIe5672VSG与NIPXI-5661VSA的PXI系统


GPS工具组可于完整导航信号期间,建立最长12.5分钟(25个框架)的波形。依6MB/s的取样率,则最大档案约为7.5GB.由于上述的波形档案尺寸,所有的波形均可储存于多款硬盘选项之一。这些波形储存资源选项包含:

o PXI控制器的硬盘(推荐使用120GB硬盘升级)

o如HDD8263与HDD8264的外接RAID装置

o外接USB2.0硬盘(已透过Western Digital Passport硬盘进行测试)

上述各种硬盘设定,均可支持超过20MB/s的连续数据串流作业。因此,任何储存选项均可仿真GPS信号,并进行记录与播放。在稍后的段落中,将说明仿真与记录GPS波形的整合作业,并进行GPS接收器效能的特性参数描述(Characterization)作业。

建立仿真的GPS信号

由于GPS接收器是透过天线传输数据,并取得卫星星历与星历信息;当然,仿真的GPS信号亦需要该项信息。卫星星历与星历信息,均透过文本文件表示,可提供卫星位置、卫星高度、机器状态,与绕行轨道的相关信息。此外,在建立波形的过程中M,亦必须选择客制参数,如星期时间(TOW)、位置(经度、纬度、高度),与仿真的接收器速率。以此信息为基础,工具组将自动选择最多12组人造卫星、计算所有的都卜勒位移(Doppler shift)与虚拟距离(Pseudorange)信息,并接着产生所需的基带波形。为了可尽快入门,工具组安装程序亦包含范例的卫星星历与星历档案。此外,更可由下列网站直接下载:

。Almanac information (The Navigation Center of Excellence) http://navcen.uscg.gov/gps/almanacs.htm

。Ephemeris information (NASA Goddard Space Flight Center) http://cddis.gsfc.nasa.gov/gnss_datasum.html#brdc

透过客制的卫星星历与星历档案,即可建立特定日期与时间的GPS信号,甚至可回溯数年以前。请注意,当选择这些档案时,必须选择与日期相对应的档案。一般来说,卫星星历与星历信息为每日更新,因此当选择特定时间与日期时,亦应选择同1天的档案。下载的星历档案往往为压缩的“*.Z”格式。因此,在搭配使用GPS工具组之前,档案必须先行解压缩。

只要使用工具组中的“自动模式(Automatic mode)”,即可囊括大多数的GPS模块作业,并可透过程序设计的方式,计算都卜勒与随机距离信息;当然,此功能亦提供手动模式。在手动模式(Manual mode)中,使用者可个别指定每组人造卫星的信息。图4即显示此2种作业模式所提供的输入参数。


1LLA(longitude,latitude,altitude)

图4.GPS工具组自动与手动模式的默认值


请注意,工具组将根据所指定的星历档案,于可能的数值范围中强制设定GPS的TOW.因此,若选择的数值超出该星历档案的范围,工具组将自动设定为最接近的数值并提醒使用者。“niGPS Write Waveform To File”范例程序即可建立GPS基带波形(自动模式),而其人机接口即如下图所示。



图5.简单的范例程序即可建立GPS测试波形。


请注意,某些特定测量作业,将决定用户所建立GPS测试的文件类型。举例来说,当测量接收器灵敏度时,将仿真单一人造卫星。另一方面来说,需要定位作业的测量(如TTFF与位置精确度),所使用的GPS信号将仿真多组人造卫星。基于上述需求,NIGPS工具组所搭配的范例程序,将同时包含单位星与多重卫星仿真功能。

记录空气中的GPS信号

建立GPS波形时,其独特又日趋普遍的方式,即是直接从空气中撷取之。在此测试中,我们使用矢量信号分析器(如NI PXI 5661)记录信号,再透过矢量信号发生器(如NI PXIe-5672)产生已记录的信号。由于在记录GPS信号时,亦可撷取实际的信号减损(Impairments),因此在播放信号时,可进一步了解接收器于布署环境中的作业情形。

只要透过极为直接的方式,即可撷取空气中的GPS信号。在RF记录系统中,我们将适合的天线与放大器,搭配使用PXI矢量信号分析器与硬盘,以撷取最多可达数个小时的连续数据。举例来说,1组2TB的RAID磁盘阵列,即可记录最多25个小时的GPS波形。由于此篇技术文件将不会讨论串流的特殊技术,因此若需要相关范例程序代码,请至:http://www.ni.com/streaming/rf.透过下列段落,即可了解应如何针对RF记录与播放系统,设定合适的RF前端。

不同类型的无线通信信号,均需要不同的带宽、中央频率,与增益。以GPS信号来说,基本系统需求是以1.57542GHz的中央频率,记录2.046MHz的RF带宽。依此带宽需求,至少必须达到2.5MS/s(1.25x2MHz)取样率。注意:此处的1.25乘数,是根据PXI-5661数字降转换器(DDC)于降频(Decimation)阶段的下降(Roll-off)滤波器所得出。

在下方说明的测试作业中,我们使用5MS/s(20MB/s)取样率以撷取完整的带宽。由于标准PXI控制器硬盘即可达到20MB/s或更高的数据流量,因此不需使用外接的RAID亦可将GPS信号串流至磁盘。然而,基于2个理由,我们仍建议使用外接硬盘。首先,外接硬盘可提升整体的数据储存量,并记录多组波形。其次,外接硬盘不会对PXI控制器的硬盘造成额外负担。在下方说明的测试作业中,我们采用1组USB2.0的外接硬盘。此硬盘为320GB的Western Digital Passport,具有5400RPM的硬盘转速。在我们的测试作业中,一般读取速度约落在25~28MB/s.因此该款硬盘可同时用于GPS波形数据串流的仿真(6MB/s)与记录(20MB/s)作业。

GPS信号记录作业最为特殊之处,即是选择并设定合适的天线与低噪声放大器(LNA)。透过一般被动式平面天线(Passive patch antenna),即可于L1GPS频带中发现介于-120~-110dBm的常见峰值功率(此处为-116dBm)。由于GPS信号的功率强度极小,因此必须进行放大作业,以使矢量信号分析器可撷取卫星信号的完整动态范围。虽然有多个方法可将合适的增益强度套用至信号,不过我们发现:若使用主动式GPS天线搭配NIPXI-5690前置放大器(Pre-amplifier)时,即可达到最佳效果。若串联2组各可达30dB增益的LNA,则总增益则可达到60dB(30+30)。因此,矢量信号分析器可测得的峰值功率,将从-116dBm提升至-56dBm.下图即为该项设定的范例系统:



图6.GPS接收器与串联的LNA.


请注意,记录操作系统的必备组件之一,即为主动式GPS天线。主动式(Active)GPS天线,包含1组平面天线与1组LNA.此款天线一般均需要2.5V~5V的DC偏压电压,并仅需约$20美金即可购买现成产品。为了简单起见,我们使用1组天线搭配1组SMA接头。我们将于下列段落中看到,在RF前端的第一组LNA噪声图形极为重要;该图形将可确认进行记录作业的仪控,是否对无线信号构成最低噪声。亦请注意,图6中的矢量信号分析器为简化图标。实际的PXI-5661为3阶段式超外差(Super-heterodyne)矢量信号分析器,较复杂于图中所示。

若将60dB套用至无线信号中,则可于L1中得到约-60~-50dBm的峰值功率。若以扫频(Swept spectrum)模式设定VSA并分析整体频谱,则亦将发现L1频带(FM与移动电话)之外的带中功率(Power in band),其强度将高于GPS信号。然而,带外(Out-of-band)信号的峰值功率一般均不会超过-20dBm,且将透过VSA的多组带通(Band pass)滤波器之一进行滤波作业。若要检视记录装置的RF前端是否达到应有效率,最简单的方法之一即为开启RFSA示范面板的范例程序。透过此程序,即可于L1GPS频带中呈现RF频谱。图7即为常见的频谱。请注意,此频谱截图是透过GPS中心频率于室外所得。主动式GPS天线与PXI-5690前置放大器,可达到60dB的总增益。

中心频率:1.57542GHz

展频(Span):4MHz

RBW:10Hz

平均:RMS、20Averages



图7.仅透过极小的分辨率带宽(RBW),才可于频谱中呈现GPS


此处使用前面所提到的RF记录与播放LabVIEW范例程序;设定-50dBm的参考准位、1.57542GHz中央频率,与5MS/s的IQ取样率。下图即显示设置范例的人机接口:



图8.RF记录与播放范例的人机接口。


GPS信号的最长记录时间,将根据取样率与最大储存容量而定。若使用2TB容量的Raid磁盘阵列(Windows XP所支持的最大磁盘),将可透过5MS/s取样率记录最多25个小时的信号。

设定RF前端

由于串联的LNA可提供60dB的增益,因此使用者可大幅提升矢量信号分析器前端的功率。在我们的测量作业中,60dB的增益即足以将峰值功率从-116dBm提升至-56dBm.而透过60dB的增益(与1.5dB的噪声系数),信号的噪声功率将为–112dBm/Hz(-174+增益+F)。因此,所能撷取到的讯噪比(SNR)最高可达56.5dB(-56dBm+112.5dBm),亦低于实际的仪器动态范围。由此可知,若有80dB的动态范围,则VSA将可记录最大的SNR,且不会有无线信号的噪声影响。

当要记录任何无线信号时,可将参考准位设定高出一般峰值功率至少5dB,以因应任何信号强度的异常现象。在某些情况下,虽然上述此步骤将降低VSA的有效动态范围,但GPS信号却不会受到影响。由于GPS信号于天线输入的最大理想SNR即为58dB(-116+174),因此若于VSA记录超过58dB的动态范围将无任何意义。因此,我们甚至可以“抛弃”仪器的动态范围达10dB以上,亦不会影响记录信号的质量(在此带宽中,PXI-5661将提供优于75dB的动态范围)。

由于必须设定合适的参考准位,适当设定记录装置的RF前端亦显得同样重要。如先前所提,若要获得最佳的RF记录数据,则建议使用主动式GPS天线。由于主动式天线内建LNA,以低噪声系数提供最高30dB的增益,因此亦可供应DC偏压。下方将接着说明多种偏压方式。

方法1:以GPS接收器进行供电的主动式天线

第一个方法,是以DC偏压“T”供电至主动式天线。在此范例中,我们将DC信号(此为3.3V)套用至偏压“T”的DC埠,且“T”又将合适的DC偏移套用至主动式天线。请注意,此处将根据主动式天线的DC功率需求,进而决定是否套用精确的DC电压。下图即说明相关连结情形。



图9.使用DC偏压“T”供电至主动式GPS天线


在图9中可发现,PXI-4110可程序化DC电源供应器,即可供应DC偏压信号。虽然多款现成的电源供应器(其中亦包含价位较低的电源供应器)均可用于此应用中,我们还是使用PXI-4110以简化作业。同样的,现有常见的偏压器(Bias tee)可进行最高1.58GHz的作业,而此处所使用的偏压器购自于www.minicircuits.com.

方法2:以接收器供电至主动式天线

供电至主动式GPS天线的第二个方法,即是透过天线本身的接收器。大多数的现成GPS接收器,均使用单一端口供电至主动式GPS天线,且此端口亦透过合适的DC信号达到偏压。若将主动式GPS接收器整合分裂器(Splitter)与DC阻绝器(Blocker),即可供电至主动式LNA,并仅记录GPS接收器所获得的信号。下图即为正确的连结方式:



图10.透过DC阻绝器(Blocker),将可记录并分析GPS信号


如图10所示,GPS接收器的DC偏压即用以供电至LNA.请注意,由于当进行记录时,即可观察接收器的相关特性,如速度与精确度衰减(Dilution)情形,因此方法2特别适用于驱动程序测试。

串联式(Noise figure)噪声系数计算

若要计算已记录GPS信号的总噪声量,只要找出整体RF前端的噪声系数即可。就一般情况来说,整组系统的噪声系数,往往受到系统的第一组放大器所影响。在所有RF组件或系统中,噪声系数均可视为SNRin与SNRout(参阅:测量技术的噪声系数)的比例。当记录GPS信号时,必须先找出整体RF前端的噪声系数。

当执行串联式噪声系数计算时,必须先行针对每笔噪声系数与增益,将之转换为线性等式;即所谓的“噪声因子(Noise factor)”。当以串联的RF组件计算系统的噪声系数时,即可先找出系统的噪声因子,并接着转换为噪声系数。因此系统的噪声系数必须使用下列等式计算之:

等式2.串联式RF放大器的噪声系数计算作业[3]

请注意,由于噪声因子(nf)与增益(g)属于线性关系而非对数(Logarithmic)关系,因此以小写表示之。下列即为增益与噪声系数,从线性转换为对数(反之亦然)的等式:

等式3到等式6.增益与噪声系数的线性/对数转换[3]

内建低噪声放大器(LNA)的主动式GPS天线,一般均提供30dB的增益,且其噪声系数约为1.5dB.在仪控记录作业的第二阶段,则由NIPXI-5690提供30dB的附加增益。由于其噪声系数较高(5dB),因此第二组放大器仅将产生极小的噪声至系统中。在教学实作中,可针对记录仪控作业的完整RF前端,使用等式2计算其噪声因子。增益与噪声系数值即如下图所示:



图11.RF前端的首2组组件噪声系数与因子。


根据上列计算,即可找出接收器的整体噪声因子:

等式7.RF记录系统的串联噪声系数

若要将噪声因子转换为噪声系数(单位为dB),则可套用等式3以获得下列结果:

等式8.第一组LNA的噪声系数将影响接收器的噪声系数

如等式8所示,第一组LNA(1.5dB)的噪声系数,将影响整组测量系统的噪声系数。透过VSA的相关设定,可让仪器的噪声水平(Noise floor)低于输入激发的噪声水平,因此用户所进行的记录作业,将仅对无线信号造成1.507dB的噪声。

对GPS接收器发出信号

由于多款接收器可使用合适的软件,让用户呈现如经度与纬度的信息,因此需要更标准化的方式进行自动测量作业。还好,目前有多款接收器均可透过众所周知的NMEA-183协议,以设定对PXI控制器发出信号。如此一来,接收器将可透过序列或USB连接线,连续传送相关指令。在NILabVIEW中,所有的指令均可转换语法,以回传卫星与定位信息。NMEA-183协议可支持6种基本指令,并各自代表专属的信息。这些指令即如下表所示:



图12.基本NMEA-183指令概述


以实际测试需要而言,GGA、GSA,与GSV指令应最为实用。更值得一提的是,GSA指令的信息可用于了解接收器是否可达到定位作业需要,或可用于首次定位时间(Time To First Fix,TTFF)测量。当执行高敏感性的测量时,实际可针对所追踪的卫星,使用GSV指令回传C/N(Carrier-to-noise)比。

虽然无法于此详细说明MNEA-183协议,但可至其他网站寻找所有的指令信息,如:http://www.gpsinformation.org/dale/nmea.htm#RMC.在LabVIEW中,这些指令可透过NI-VISA驱动程序转换其语法。



图13.使用NMEA-183协议的LabVIEW范例

GPS测量技术

目前有多种测量作业可为GPS接收器的效能进行特性描述(Characterization),其中亦有数种常见测量可套用至所有的GPS接收器中。此章节将说明执行测量的理论与实作,如:灵敏度、首次定位时间(TTFF)、定位精确度/可重复性,与定位追踪不定性(Uncertainty)。应注意的是,还有许多不同的方式可检验定位精确度,并执行接收器追踪功能的测试。虽然接着将说明多种基本方式,但仍无法概括所有。

灵敏度(Sensitivity)测量作业介绍

灵敏度为GPS接收器功能的最重要测量作业之一。事实上,对多款已量产的GPS接收器来说,仅限为最后生产测试所执行的RF测量而已。若深入来说,灵敏度测量即为“接收器可追踪并接收上方卫星定位信息的最低卫星功率强度”。一般人均认为,GPS接收器必须串联多组LNA以达极高的增益,才能将信号放大到合适的功率强度。事实上,虽然LNA可提升信号功率,亦可能降低SNR.因此,当GPS信号的RF功率强度降低时,SNR也将跟着降低,最后让接收器无法追踪卫星。

多款GPS接收器可指定2组敏感值:撷取灵敏度(Acquisition sensitivity)与信号追踪灵敏度(Signal tracking sensitivity)[9].如字面上的意思,撷取灵敏度为“接收器可进行定位的最低功率强度”。相反而言,信号追踪灵敏度为“接收器可追踪各个卫星的最低功率强度”。

以基本概念而言,我们可将灵敏度定义为“无线接收器产生所需最低位错误率(BER)的最低功率强度”。由于BER与载波噪声(Carrier-to-noise,C/N)比息息相关,因此灵敏度一般均是透过已知的接收器输入功率强度,得出所需的C/N值而定。

请注意,各组卫星的C/N值,均可直接透过GPS接收器的芯片组而得。目前有多种方式可计算出此项数值,而某几款接收器却是计算发讯日期(Messagedate)而得出约略值。当透过高功率测试激发进行模拟时,新款GPS接收器一般均可得到54~56dB-Hz的C/N峰值。由于即便是万里无云的晴空,GPS接收器亦可能得出30~50dB-Hz的C/N值;因此该C/N限值尚属于正常范围之内。一般GPS接收器均必须达到最小C/N比值,才能符合28~32dB-Hz的定位(撷取灵敏度)范围。因此,某些特殊接收器的灵敏度可定义为“接收器产生最低定位C/N比值所需的最低功率强度”。

理论上来说,单一卫星或多组卫星测试激发均可测量灵敏度。而实务上来看,由于已可轻松且稳定发出所需的RF功率,因此往往是以单一卫星模式进行测量作业。依定义而言,灵敏度为接收器回传最小C/N比值的最低功率强度。在接下来的讨论中,则可发现接收器的灵敏度甚为依赖RF前端的噪声指数.

在等式9中,灵敏度可表达为C/N比值与噪声指数的函式。举例来说,定位追踪所需的最低C/N为32dB-Hz,则噪声指数为2dB的接收器将具有-140dBm(-174+32+2)的灵敏度。然而,当单独测试基带(Baseband)收发器时,往往忽略了第一组LNA.一般接收器为下图所示:



图14.GPS接收器往往串联多组LNA[6]


如图14所示,一般GPS接收器均是串联了多组LNA,为GPS信号提供高效率的增益。如先前所说,第一组LNA将决定整组系统的噪声指数。图14中,我们先假设LNA1具有30dB的增益与1.5dB的NF.此外,我们假设整个RF前端具有40dB的增益与5dB的NF.接着请注意,由于LNA2之后的噪声功率将超过-174dBm/Hz的热噪声(Thermal noise),因此带通(Bandpass)滤波器将同时减弱信号与噪声。如此将几乎不会对SNR造成任何影响。最后,我们假设GPS芯片组可产生40dB的增益与5dB的噪声指数。即可计算出整组系统的噪声指数为:



图15.线性与对数模式的增益与NF


根据上列计算,即可找出接收器的整体噪声因子:

等式10与11.第一组LNA的噪声系数将影响接收器的噪声系数

透过等式10与11来看,若GPS接收器连接已启动的天线,则其噪声指数约可达1.5dB.请注意,我们已经先忽略了相关噪声指数等式中的第三项条件。由于此数值极小,基本上可将之忽略。

在某些案例中,GPS接收器的作业天线会搭配使用内建LNA.因此测试点将忽略接收器的第一组LNA.如此一来将透过第二组LNA得出噪声指数,且其往往又大于第一组LNA的噪声指数。若将LNA1移除,则可透过下列等式得出LNA2的噪声指数。

等式12与13.移除第一组LNA所得到的接收器噪声指数

如等式12与13所示,若将具备最佳噪声指数的LNA移除,则将大幅影响整组接收器的噪声指数。请注意,虽然此“常见”GPS接收器噪声指数的计算范例纯为理论叙述,但仍具有其重要性。由于接收器所呈现的C/N比值,实在与系统的噪声系数密不可分,因此系统的噪声系数可协助我们设定合适的C/N测试限制。

单一卫星灵敏度测量

在了解灵敏度测量的基本理论之后,接着将进行实际测量的各个程序。一般测试系统均是透过直接联机,将模拟的L1单一卫星载波送入至DUT的RF通讯端口中。为了获得C/N比值,我们将接收器设定透过NMEA-183协议进行通讯。在LabVIEW中,则仅需串联3笔GSV指令,即可读取最大的卫星C/N值。

根据GPS规格说明,单一L1卫星若位于地球表面,则其功率应不低于-130dBm[7].然而,消费者对室内与户外的GPS接收器使用需求,已进一步压低了测试限制。事实上,多款GPS接收器可达最低-142dBm定位追踪灵敏度,与最低-160dBm信号追踪。在一般作业点(Operatingpoint)时,大多数的GPS接收器均可迅速持续锁定低于6dB的信号,因此我们的测试激发则使用-136dBm的平均RF功率强度。

若要达到最佳的功率精确度与噪声水平(Noise floor)效能,则建议针对RF矢量信号发生器的输出,使用外接衰减。在大多数的案例中,40dB~60dB的外接衰减,可让我们更接近线性范围(功率≥-80dBm),妥善操作产生器。由于各组接收器的定位衰减(Fix attenuation)均不甚固定,因此必须先行校准系统,以决定测试激发的正确功率。

在校准程序中,我们可考虑:1)信号的峰值平均比(Peak-to-average ratio)、衰减器各个部分的差异,还有任何接线作业可能的插入损耗(Insertionl oss)。为了校准系统,应先从DUT切断联机,再将该联机接至RF矢量信号分析器(如PXI-5661)。

PartA:单一卫星校准

当执行灵敏度测量时,RF功率强度的精确性,实为信号发生器最重要的特性之一。由于接收器可获得0数字精确度的C/N值(如34dB-Hz),因此生产测试中的灵敏度测量可达±0.5dB的功率精确度。因此,必须确保我们的仪控功能至少要达到相等或以上的效能。由于一般RF仪控作业是专为大范围功率强度、频率范围,与温度条件所设计,因此在执行基本系统校准时,测量的可重复性(Repeatability)应远高于特定仪器效能。下列章节将进一步说明可确保RF功率精确度的2种方法。

方法1:单一被动式RF衰减器:

虽然使用外接衰减,是为了确保GPS信号产生作业可达最佳噪声密度,但实际仅需20dB的衰减,即可确保噪声密度低于-174dBm/Hz.当使用20dB的固定板(Pad)时,仅需将仪器设定为超过20dB的RF功率强度即可。为了达到-136dBm的目标,仪器应程序设计为-115dBm(假设1dB的连接线插入损耗),且将20dB衰减器直接连至产生器的输出。则所达到的RF功率将为-136dBm,但仍具有额外的不确定性。假设20dB的固定板具有±0.25dB的不确定性,且RF产生器亦于-116dBm具有±1.0dB的不确定性,则整体的不确定性将为±1.25dB.因此,虽然方法1最为简单且不需进行校准,但由于系统中的多项组件均未经过校准,因此可能接着发生不确定性。请注意,造成仪器不确定性最主要的原因之一,即为电压驻波比(Voltage standing wave ratio,VSWR)。因为被动式衰减器是直接连至仪器的输出,所以反射回仪器的驻波即为实际衰减。由于降低了功率的不确定性,因此可提升整体功率的精确性。

请注意,此处亦使用高效能VNA确实测量被动衰减器。透过此测量装置,即可于±0.1dB的不确定性之内,决定所要套用的衰减。

方法2:经过校准的多组被动衰减器

校准RF功率的第二种方法,即是使用高精确度的RF功率计(高于±0.2dB的精确度,并最低可达-70dBm)搭配多款固定式衰减器。因为我们是以固定频率,与相对较小的功率范围操作RF产生器,所以可有效修正由产生器造成的任何错误。此外,由于被动衰减器是以固定频率进行线性动作,因此亦可校准其不确定性。在方法2中,主要即必须确保产生系统可达到最佳效能,且将不确定性降至最低。此高精确度功率计可达优于80dB的动态范围(往往为双头式仪器),进而确保最低的测量不确定性。

透过高精确度的功率计,即可使用3种测量作业进行系统校准:1种用于矢量信号发生器的RF功率,另外2种测量作业可校准衰减器。为了达到最佳的不确定性,则应设定系统所需的最少测量次数。若要达到-136dBm的RF功率强度,则可将RF仪器程序设计为-65dBm的功率强度,并使用70dB固定衰减(假设1dB插入损耗)。为了确实进行RF功率强度的程序设计作业,则可透过固定的Padding校准实际衰减。校准程序如下:

1)将VSG程序设计为+15dBm功率强度

可开启MeasurementandAutomationExplorer(MAX)并使用测试面板。透过测试面板以+15dBm产生1.58GHz连续波(CW)信号。

2)以高精确度的功率计测量RF功率

使用RF功率计,让功率达到仪器功率精确度规格的+14.78dBm(或近似值)之内。

3)附加70dB固定式衰减器(30dB+20dB+20dB)与任何必要的连接线

4)以高精确度的功率计测量RF功率

将功率计设定为最大平均值(512),以测量RF功率强度。此处的读数为-56.63dBm.

5)计算RF总耗损

若以+14.78dBm减去-56.63dBm,即可在整合了衰减器与连接线之后,确保产生71.41dB的功率耗损。请注意,多款衰减器往往具备最高±1.0dB的不确定性。因此测量所得的衰减可能最高达±3.0dB的变化。所以校准衰减器更显重要,确保已知衰减可达较低的不确定性。

根据衰减器与连接线的校准例程,即可确定所需的RF功率强度必须达到-136dBM.基于前述的71.41dB衰减,必须将RF矢量信号发生器设定为-58.59dBm的功率强度。若要确认程序设计过后的功率无误,则可依下列步骤进行:

6)直接将功率计附加至RF矢量信号发生器

并移除所有的衰减器与连接线。

7)将RF产生器设定必要数值,使其最后功率达到-136dBm.

而程序设计的数值应为-58.59dBm,即由-136dBm+71.41dB而得。

8)以功率计测量最后功率。

请注意,所测得的RF功率,将因仪器的功率精确度而有所不同。即使测得-58.59,则实际结果亦将因仪器的不确定性而产生些许变化。

9)调整产生器功率直到功率计读出-58.59dBm

虽然RF产生器可于一定的容错范围内进行作业,但此数值不仅具有可重复性,亦可调整RF功率计进行校准,直到得出合适的数值为止。

透过上述方法,仅需3项RF功率测量作业,即可决定所需的RF功率。因此,假设测量装置具有±0.2dB的不确定性,则可得出–136dBm的功率不确定性将为±0.6dBm(3x0.2)。

PartB:灵敏度测量

现在校准RF测量系统的功率之后,接着仅需进行RF产生器的程序设计,将功率强度设定足以让接收器回传最小的C/N.虽然用于测量灵敏度的RF功率将因接收器而有所不同,但是接收器C/N与RF功率的比值,将呈现完美的线性关系。在我们的测试中,可假设所需的C/N为28dB-Hz以进行定位。透过等式12,即可得出接收器C/N比值与噪声指数之间的关系。

假设卫星功率稳定,则可发现由接收器回报的C/N比,几乎就等于接收器的噪声指数函式。下表显示可达到的多样C/N比值。



图16.C/N为噪声指数的函式


一般来说,接收器上的GPS译码芯片组,将得出定位作业所需的最小C/N比值。然而,又必须透过整组接收器的噪声指数,才能决定目前功率强度所能达到的C/N比值。因此,当测量灵敏度时,必须先了解定位作业所需的最小C/N比值。

其实有多种方法可测量灵敏度。如上表所示,RF功率与灵敏度具有直接相关性。因此,可根据现有的灵敏度功率强度,测量接收器的C/N比值;亦可根据不同的RF功率强度,得出系统灵敏度。

为了说明这点,则可注意RF信号功率与GPS接收器C/N比值,在不同功率强度之下的关系。下方测量作业所套用的激发,即忽略了第一组LNA而进行,且接收器的整体噪声指数约为8dB.而图17显示相关结果。




图17.接收器的C/N比值为RF功率的函式


如图17所示,此测量范例的RF功率与C/N比值,几乎是呈现完整的线性关系。而若使用高输入功率模拟C/N比值,将产生例外情况;接收器报表将出现可能的最大C/N值。然而,因为在任何条件下,进行实验的芯片组均不会产生超过54dB-Hz的C/N值,所以这些结果均属预期范围之中。

根据图7中所示RF功率与灵敏度之间的线性关系,其实仅需针对接收器模拟不同的功率强度,即可进行GPS接收器的生产测试作业。若接收器在-142dBm得出28dB-Hz的C/N值,则亦可于-136dBm得到34dB-Hz的C/N值。若特别注重测量速度,则可使用较高的C/N值,再从结果中推断出灵敏度的信息。

找出噪声指数

而由图17所示,接收器的噪声指数将直接与RF功率强度与载噪比互成比例。根据此关系,我们仅需针对RF功率强度与C/N进行关联性,即可测量芯片组的噪声指数。而此项测量中请注意,应以0.1dB为单位增加产生器的功率。由于NMEA-183协议所得到的卫星C/N值,是以最接近的小数字为准,因此在测量接收器C/N比值时,应估算噪声指数达1位数的精确度。范例结果如图18所示。



图18.DUT功率与接收器C/N的关联。


如图18所示,若RF功率强度处于-136.6dBm~-135.7dBm之间,则其C/N比值将维持于30dB-Hz.若以舍入法计算NMEA-183的数据时,则几乎可确定-136.1dBm功率强度将产生30.0dB-Hz的C/N比值无误。透过等式14,芯片组的噪声指数则为-174.0dBm+-136.1dBm+30.0dB-Hz=7.9dB.请注意,此计算是根据2组不确定性系数而进行:矢量信号发生器的功率不确定性,还有接收器所产生的C/N不确定性。


关键词: GPS接收器 首次定位 PXI RF

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关电路