基于虚拟无线电的RFID读写器实现方案
摘要:随着通用计算机性能的不断提高,虚拟无线电技术得以发展。根据虚拟无线电处理基带信号具有更好的灵活性、通用性和开放性的优点以及ISO/IEC 18000-6C标准中超高频RFID读写器的特桂,在此提出了一种基于虚拟无线电的超高频RFID读写器的实现方案。该方案介绍了常见RFID系统的结构和工作原理,重点阐述了基于虚拟无线电的RFID读写器的整体结构和工作流程,并对接收端算法做了研究与实现。
关键词:虚拟无线电;超高频;射频识别;读写器;电子标签
0 引言
近年来,随着多核CPU的出现与应用,个人计算机在计算能力和性能上大幅度提高,在某种程度上可以与传统的专用数字信号处理器媲美,因此在一台计算机上设计通用的软件无线电平台已成为一种可能。研究基于多核PC的软件无线电平台,能够在在一台计算机上实现多种通信协议,而且易于开发和软件升级,无论从开发者角度讲,还是从用户角度讲,都极大地方便了各自的工作和体验,具有重要的研究价值和商业应用价值。虚拟无线电是一种真正意义上的软件无线电。它采用高性能的模/数和数/模转换器,对宽带射频信号直接进行变换,所有无线电功能用运行于工作站或个人计算机上的应用程序来实现。虚拟无线电技术主要有如下特点:易于实验;开发快捷;与其他应用结合;改进功能实现。无线射频识别技术(Radio Frequency Identification,RFID)是一种非接触的射频识别技术,其基本原理是通过射频信号与空间耦合传输特性,实现对被识别物体的自动识别。现有的RFID读写器一般采用ASIC,DSP,FPGA或ARM对基带信号进行处理,此方法处理基带信号方法不灵活,且需要设计人员掌握每种嵌入式系统的开发方法,因此技术门槛比较高,开发周期较长。随着通用计算机性能的不断提高,使得基于通用处理器实现通信系统成为可能,根据虚拟无线电的上述特点,本文提出了基于虚拟无线电实现RFID读写器的方案。
1 RFID系统结构与工作原理
常见的RFID系统包括4部分:标签、天线、读写器和控制器(即PC主机)组成。如图1所示。
RFID系统的工作原理为读写器通过天线发出含有信息的一定频率的射频信号,当标签进入读写器的识别区域内,标签周围形成电磁场,其天线通过耦合产生感应电流,从而获得能量漱活内部微芯片电路。此时标签根据读写器发出的信息决定是否响应,即是否反向散射数据;需要响应时,标签通过天线将存储在标签中的信息转换成电磁波,然后发送给读写器;读写器接收到标签反射的信号时,将信号进行解调和解码,识别出标签反向散射的数据,然后通过标准的网络接口传送给控制器;控制器根据逻辑运算判断该标签的合法性,针对不同的设定对这些数据进行管理和控制。
按照读写器发射频率的不同,RFID系统可以分为低频(135 kHz以下),高频(13.56 MHz),超高频(860~960 MHz)和微波(2.4 GHz以上)等几大类。其中,超高频RFID系统一般采用电磁反向散射原理来实现读写器和电子标签之间的通信过程。
本文介绍的基于虚拟无线电实现的RFID读写器符合ISO/IEC 18000-6C标准。ISO/IEC 18000-6C标准是信息技术领域关于超高频RFID技术的空中通信技术标准。该标准采用开放的体系结构,充分考虑了标签低处理能力、低功耗和低成本要求,在射频频段选择、物理层数据编码及调制方式、防冲突算法、标签访问控制和隐私保护等技术方面采取了一系列改进;其中,读写器到标签的前向链路的调制方式为ASK,采用PIE编码,标签到读写器的反向链路的调制方式为ASK或PSK,采用FM0编码或者Miller编码,并对传输数据采用差错控制编码技术(CRC16校验)。本文介绍的读写器到标签的前向链路采用ASK调制方式和PIE编码,标签到读写器的反向链路采用ASK调制方式和FM0编码。
2 基于虚拟无线电实现读写器的方法
2.1 读写器的结构
该读写器的结构如图2所示,主要由4部分组成:主控部分、FPGA逻辑控翻模块、射频前端模块及天线。主控部分:主控部分选择通用PC,标签识别层数据处理和基带信号处理在PC中完成,通过PCIe接口和逻辑控制模块连接;FPGA逻辑控制模块:主要负责有AD/DA控制、RF切换、功放、发送和接收数据控制的功能;射频前端模块:其中射频收发功能采用LMS6002D芯片实现,该芯片集成LNA/PA驱动、IX/RX混频器、TX/RX滤波器、频率综合器、接收增益控制发送功率控制等子模块,能够完成射频模拟前端的大部分功能天线。
加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW
或用微信扫描左侧二维码