振动加速度检测中传感器连接状态的自动识别

时间:2012-08-07来源:网络

摘要:在振动加速度检测中,如果系统不能对传感器连接状态加以自动区分,将正常连接状态下的数据和异常连接状态下的数据全部存入数据库,则必然会给数据库增加不必要的负担,造成数据污染;另外,为了传感器检修的便利,也有必要自动识别传感器的连接状态。对振动加速度检测中传感器四种连接状态的自动识别方法进行了研究:定义了表征不同传感器连接状态的加速度信号数字特征,结合基于LDA的特征降维和最近邻分类器来实现自动识别。实验显示,提出的振动加速度传感器四种连接状态的自动识别方法是有效的。
关键词:振动加速度检测;传感器连接状态;自动识别;特征提取;近邻法

0 引言
在公路桥梁等大型结构健康监测、机器状态监测等工作中,经常需要检测振动加速度信号。一个典型的振动加速度在线监测系统包括:加速度传感器、振动加速度采集卡、工控机、数据库服务器等,如图1所示。监测系统在传感器正常安装和连接后,有时可能会由于施工等原因造成传感器松脱、传感器导线中断等异常连接状态;监测系统在调试阶段,传感器往往尚未连接至导线或采集板卡,也会表现为一种异常连接状态。如果监测系统不对传感器连接状态加以区分,将正常连接下的数据和异常连接下的数据全部存入数据库,则必然会给数据库增加不必要的负担,造成数据污染。另外,为了方便传感器的检修,也有必要自动识别传感器的连接状态。
本文考虑振动加速度传感器以下四种连接状态的区分:正常安装连接状态;传感器安装松脱状态;远端(图1中A点)处传感器未连接上导线;近端(图1中B点)处导线未连接上采集卡。

的特征值分解,确定K-L变换的本征向量U’和本征值Λ’,取d个最大本征值对应的本征向量为W,即W=[u1,u2,…,ud],后文取d=3。
(5)求特征变换降维后的最终样本Y1。令Y1=W’Y则得到降维后的样本。
2.2 分类识别
基于降维后的学习样本,可以设计分类器,以对传感器四种连接状态进行分类识别。本文采用简单有效而被广泛采用的近邻法(Nearest Neighbor Classification)来进行分类。即将降维后的学习样本作为标准样本,将每次新获得的8维原始样本通过预先确定的降维矩阵B和W降维为待检样本;然后,在标准样本中找出与待检样本距离最近的样本,将其类别确定为待检样本的类别。

3 实验与结果
实验是用一ICP加速度传感器检测工控机开机时上表面的振动,采集卡采用的是NI公司的4474卡,见图1。实验中模拟的加速度传感器的四种连接状态的具体形式是:
(1)传感器吸在工控机上表面并与4474正常连接;
(2)传感器松放在工控机上表面并与4474正常连接;
(3)传感器端与导线的接头断开;
(4)4474端与导线的接头断开。每种状态下共采集50组数据,采样率均为10 kHz,采样长度为100 000个点。
f.JPG
用四种状态下的前30组数据进行学习。按第1节的方法计算这些数据的原始特征,形成8维的原始特征向量。按第2节的方法分别求出白化变换矩阵B、本征向量U’和本征值Λ’;从式(6)中的最后三个特征值很大可知,降维后的维数应取d=3。降维后的最终学习样本集Y1(3×120矩阵)见图3。由图3可知,四类连接状态的学习样本在降维之后能完全分开。

g.JPG


用四种状态下的后20组数据进行分类测试。首先计算每组数据的8个原始特征,基于学习阶段确定的降维矩阵对每个样本进行降维,这里降为3维;然后,与标准样本——学习样本进行一一比对。结果显示,方法对四种状态下的每个测试样本都能正确分类识别,测试正确率为100%。

4 结论
本文定义了表征振动加速度传感器连接状态的8个特征,并结合基于可分性判据的特征降维和近邻法分类,形成了识别振动加速度传感器四种连接状态(正常连接、松脱、远端导线断开、近端导线断开)的一种方法或者说途径。实验显示所提方法切实有效。相信该方法在结构健康监测、机器状态监测等中大有可为,通过自动识别振动加速度传感器的连接状态,可避免系统调试及使用过程中出现的异常连接数据进入数据库,造成数据污染、增加数据库负担;同时,该方法也可为传感器的检修提供参考。

关键词: 状态 自动识别 连接 传感器 加速度 检测 振动

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版