简析LED照明在实际应用中的热特性
图5 LED和光源系统的结构
函数从测试到模型结构函数帮助工程师评估整个散热路径中的各个部分。重要的是它们可以帮助揭示设计中存在的问题,这些问题可能影响设备的生产或可靠性。
3 从测试到模型
结构函数可以进一步转变成简化模型,也就是一个包含热阻热容的等效网络,它包含了结构函数图形中所包含的所有数值。图6描述了类似功率LED等半导体元件的一个通用模型。当然,实际的模型中R和C会有具体的数值。
图6 简约模型
借助瞬态热测试得到的R/C网络模型可以直接被用于热设计工具中,在这些热设计工具中对LED系统进行热仿真。为了满足市场对于它们产品更多热性能数据的要求,一些半导体供应商开始使用瞬态模型去描述它们功率开关和类似产品的热性能,这也为LED供应商在将来也遵从这种做法提供了借鉴。
4 光度测量揭示LED的真实颜色
先前所有的努力使照明设备达到投放到市场的端口。然而,此时必须回答一个重要的问题:当照明设备工作在它规定的温度范围内,它预期发出多少光?在产品批量生产之前,必须提供样机完整的光度和辐射特性。在现在自动化工具的帮助下,热和光测量可以被同时进行。
为了同时进行测量,之前已经解释了热测试必须与一个子系统相结合,这个子系统是满足CIE1要求(参见备注)的条件下,用于测试LED光输出。这个子系统包含了一个恒温器(类似冷板)和探测器。两个器件由特定的软件进行控制。一个完全整合的热/辐射/光度测试系统可以描述照明设备的热阻和光输出特性,包括了辐射热流(也就是输出光功率),光通量和染色性。这些值可以在不同的参考温度和前向电流条件下,同时得到测量。
重要的是,对于普通循环光度测试增加热瞬态测试不会明显增加测试时间。这是因为贴附到冷板的功率LED结温通常在30~60S之内达到稳定。LED热阻测试之前的加热过程,是一个相类似的过程。因此,加上热测试的测试时间与仅仅光输出测试的时间是一样的;所有的这些特性必须在LED热稳定的条件下测量。
5 温度:参考,周围的,环境…
热管理解决方案的结点至环境的热阻很容易受到环境温度的影响,从而使测试结果失真。因此当预测照明设备热性能时,测试环境温度也就是参考温度必须注明。但热和光度/辐射测量被同时完成时,参考温度就是冷板的温度。
正如之前的解释,LED特性的工业标准化工作还在进行,这也意味着供应商在描述它们产品和提供相关数据时有很大的自由度。通常环境方面的信息不会得到重视。关于产品性能的数据可能是照明设备处于最佳照明时得到的,可以说忽略了真实工作条件下的一些影响。例如,通常供应商提供的LED数据是在25oC的环境温度条件下,即便LED安装在灯具中之后其安装面的温度为50oC,甚至80oC。在工作状态下,实际的LED结温可能处于80~100oC的范围,从而引起光通量的急剧下降。
在图7a中显示了两个同一厂商的两个白色LED光通量和参考温度的关系,这两个LED具有不同的散热方式。散热方式1使用了一块金属的PCB板,而散热方式2使用了传统的FR4板。此外,两个LED样品的PCB板和散热器之间使用了不同的导热界面材料。
得到光通量和参考温度的测试方法非常简单。测试时冷板直接影响LED的结温。因此,通过改变冷板的温度,可以观察结温变化对于光通量的影响。
图7a中的两个LED曲线并不完全平行。因为测试是基于同一类型的LED,所以人们可能希望两个LED的性能是一致的。然而,请注意光通量和参考温度的曲线图。采用的导热界面材料有着不同的温度影响,从而对LED结温产生不同的影响。不同冷板温度下的结构函数可以进一步揭示这些影响的程度和产生位置。
很多的测试工作都是关于确定加热功耗和每一个参考温度下的热阻值。如果具有这些信息,就可以计算相应的LED结温值。如果没有进一步的测试要求。工程师可以使用之前的信息,重新绘制LED结温与光通量之间的关系。
基于真实的LED结温,重新绘制曲线将消除光通量曲线斜率的偏差。图7b描述了一组光通量和结温的曲线,并且这里的真实结温通过真实的加热功率和真实的热阻进行计算得到。现在对于同一供应商的所有LED样品,由前向电流值获得的特性斜率是一致的。
加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW
或用微信扫描左侧二维码