电源设备可靠性的研讨

时间:2011-03-27来源:网络

——GM:地面移动式和便携式的环境。劣于地面固定式的条件,主要是冲击振动。通风冷却可能受限制,只能进行简易维修。

上述环境条件下的环境系数πE如表5所列:

表5环境系数πE

元器件类型GBGFNSGM 
集成电路0.21.04.04.0说明:λp=λb·πE式中:

λp实际使用中的

失效率λb基本

失效率πE环境系数

电位器1.02.05.07.0
功率型薄膜电阻器1.05.07.512.0
电容器纸和塑料膜1.02.04.04.0
陶瓷1.02.04.04.0
铝电介1.02.012.012.0
变压器1.02.05.03.0
继电器军用1.02.0910
下等质量2.04.02430
开关0.31.01.25.0
接插件军用1.04.04.08.0
下等质量10161216
从表5可以看出:使用环境对元器件的失效率影响极大,GM和GB相比失效率要高出4~10倍。环境条件的改善往往受使用场合的限制。在设计和生产中比较容易做得到的就是重视和尽量加强通风冷却。

过高的环境温度对元器件的可靠性非常有害:

(1)半导体器件(含各种集成电路和二极管,三极管)

例如硅三极管以PD/PR=0.5设计(PD:使用功率,PR:额定功率),则环境温度对可靠性的影响,如表6所列。

表6环境温度对半导体器件可靠性的影响

环境温度Ta[℃]205080
失效率λ[1/109h]500250015000
(2)电容器(以固体钽电容器为例)

以UD/UR=0.6设计(UD:使用电压,UR:额定电压),则环境温度对可靠性的影响如表7所列。

表7环境温度对电容器可靠性的影响

环境温度Ta[℃]205080
失效率λ[1/109h]52570
(3)碳膜电阻器

以PD/PR=0.5设计,则环境温度对可靠性的影响如表8所列。

表8环境温度对碳膜电阻器可靠性的影响

环境温度Ta[℃]205080
失效率λ[1/109h]124
德国的研究报告指出,SK?2型彩色电视机,经过合理地设计通风冷却条件,使机内温度降低了10℃左右,结果平均无故障工作时间MTBF增加2倍,显著地改善了可靠性。美国“民兵”洲际导弹的电子系统把环境温度严格限制于≤40℃。达到了明显降低失效率的目的。

可见,加强通风冷却十分有益于电子系统的可靠性。国内有些部门(如铁路)要求系统有很高的可靠性,又明令不许使用风扇进行强迫通风冷却。结果不仅设备成本提高,可靠性也难以真正保证,人为地造成了许多问题。其实,现在优质的风扇可以保证50000~60000h的使用寿命(相当于连续运行6年以上)。更换风扇比其他部件的维修也省力省时得多。只要在系统设计条件中,规定风扇即使不工作,设备依然可以长期正常运行。那么,加强通风冷却,绝对有利于可靠性,何乐而不为!

3?3减小元器件的负荷率是改善失效率的捷径

元器件实际工作中的负荷率和失效率之间存在着直接的关系。因而,元器件的类型,数值确定以后,应从可靠性的角度来选择元器件必须满足的额定值。如半导体器件的额定功率、额定电压、额定电流,电容器的额定电压,电阻器的额定功率等等。

(1)硅半导体器件

环境温度Ta=50℃,PD/PR对频率的影响如表9所列。

表9PD/PR对硅半导体器件失效率的影响

PD/PR00.20.30.40.50.60.70.8
λ[1/109h]3050150700250070002000070000
由表9可知,当PD/PR=0.8时,失效率比0.2时增加了1000倍以上。

(2)电容器

英国曾发表电容器失效率λ正比于工作电压的5次方的资料,称为“五次方定律”,即λ∝U5。

当U=UR/2,

λ=λR/25=λR/32(λR为额定失效率)

当U=0.8UR=UR/1.25,

λ=λR/(1.25)5=λR/3.05

当电容器工作电压降低到额定值的50%时,失效率可以减小32倍之多。

(3)碳膜电阻器

环境温度Ta=50℃,美国于上世纪70年代实际使用的军品数据如表10所列。

表10PD/PR对碳膜电阻器失效率的影响

PD/PR00.20.40.60.81.0
λ[1/109h]0.250.51.22.54.07.0
由表10可知,当PD/PR=0.8时,失效率比0.2时增加了8倍。

以上数据表明为了保证可靠性,必须减小元器件的负荷率。例如:美国“民兵”洲际导弹的电子系统规定元器件的负荷率为0.2。

实际使用中的经验数据为:

——半导体元器件负荷率应在0.3左右;

——电容器负荷率(工作电压和额定电压之比)最好在0.5左右,一般不要超过0.8;

——电阻器、电位器、负荷率≤0.5。

总之,对各种元器件的负荷率只要有可能,一般应保持在≤0.3。不得已时,通常也应≤0.5。

3?4简化电路,减少元器件的数量,尽量集成化,认真选用高可靠性的元器件,是提高可靠性的最基本思路

电子系统可靠度

R=R1·R2·R3……RN(0≤R≤1)。

电子系统的失效率

λ=n1·λ1+n2·λ2+n3·λ3……nN·λN.(λ≥0)

显然,元器件数量越多越不可靠。

假如每个元器件Ri=0.999,共有5000个元器件,则R=0.9995000=0.01,显然极不可靠。

若元器件数量减到1800个,则R=0.9991800=0.19。说明如能做到元器件减少64%,可靠度将增加19倍。

因而应尽量采用集成化的器件。如一只集成电路可以代替成千上万只半导体三极管和二极管等器件,从而极大地提高了可靠性。

还应注意到选用高可靠性的元器件类型和品质档次的重要意义。例如功能相似的电容器,云母介质的失效率就要比玻璃或陶瓷介质的低30倍左右。同类的元器件,不同品质档次,如军品和民品,上等质量和下等质量,在同样的功能和条件下,失效率也会差3~10倍,选用应慎之又慎。

可以说,在保证相同功能和使用环境的条件下,越简化的电路,越少的元器件,系统就越可靠。

例如:某公司1000VA高品质交流参数稳压电源,使用于GM环境条件(移动,车载,通风不理想,不便维修)。也能保证MTBF≥20万h。主要原因就是电路简单,元器件数量少。整台电源只包括:

——特种变压器1只

基本失效率为λ1=300×10-9/h。

——金属化薄膜电容器2只

基本失效率为λ0=830×10-9/h。

电容器负荷率为0.8。所以,

λ2=(830/3.05)×10-9/h。

——焊接点20个

基本失效率为λ3=5.7×10-9/h。

因而:λΣ=λ1+2λ2+20λ3

=[300+544+114]×10-9/h

=958×10-9/h。

使用于GM环境条件,平均πE=4,

λΣP=λΣ·πE=3832×10-9/h。

平均无故障工作时间

MTBF=1/λΣP=(1/3832)×109/h

=26×104h=26万h

≥20万h。

年可靠度:P=1/eλΣP·8760=0.967=96.7%

故障率:F=1-P=3.3%

公司长期生产实践的统计数字也证明,该类电源的MTBF≥20万h。

当然,使用在其他环境条件,可靠性会更好。

3?5重视元器件的老化工作减少系统的早期失效率

元器件、设备、系统的失效率在整个使用寿命中并非是恒定不变的常数,通常存在着如图4所示的“浴盆曲线”。

(1)早期通常早期失效率会比稳定期的失效率高得多。造成失效的原因是元器件制造过程中的缺陷和装机的差错或不完善的连接点或元器件出厂时漏检的不合格产品混入所致。因而一定要先使设备运行一个时期,进行老化,使早期失效问题暴露在生产厂老化期间。给用户提供的是已进入稳定期的可靠产品。

图4失效率与时间的关系曲线

老化的时间,日本的民用产品(如电视机)一般不小于8h。而美国宇宙飞船规定每个元器件装上飞船之前老化50h,装上飞船以后,又老化250h,共300h。以淘汰有隐患的元器件,保证工作可靠性。实际工作中,对可靠性要求较高的设备老化时间确定在20~50h较为合适。

(2)稳定期此时失效率λ近于常数,用作正常使用期。也可根据失效率λ来预算设备的其他可靠性指标。通常,在较好的使用环境中,如果一旦出现故障能得到及时和正确的维修,则电子系统的稳定期应不短于6~8年。

(3)磨损期设备使用的寿命末期,由于元器件的材料老化变质,或设备的氧化腐蚀、机械磨损、疲劳等原因造成。失效率λ将逐步增加,进入不可靠的使用期。磨损期出现的具体时间,受各种因素影响,很不一致。设计合理,元器件质量选择较严,环境条件不太恶劣的设备磨损期出现的时间会晚得多。

4结论

保证设备的可靠性是一个复杂的涉及广泛知识领域的系统工程。只有给予充分的重视和认真采取各种技术措施,才会有满意的成果。其基本点为:

(1)高可靠度的复杂系统,一定要采用并联系统

的可靠性模型。系统内保有足够冗余度的备份单元,可以进行自动或手动切换。如果功能上允许,冷备份单元切换,较热备份单元切换,更能保证长期工作的可靠性。

(2)任何电子系统都不可能100%地可靠。设计

中应尽量采用便于离机维修的模块式结构,并预先保留必要数量(通常为5%)的备件。以便尽量缩短平均维修时间MTTR。使有效度A近于100%。

(3)加强通风冷却,改善使用环境是成倍提高可

靠性的最简便和最经济的方法。

(4)简化电路,减少元器件的数量,减轻元器件的

负荷率,选用高可靠的元器件是保证系统高可靠的基础。

(5)重视设备老化工作,减少系统早期失效率。

相信,通过精心设计,认真生产,严格质检,及时维修,完全可以使电子系统(含电源设备)达到十分接近于100%的可靠度。满足国防,科研,工业等各方面的需求,并进而走向世界。

1 2 3

关键词: 研讨 可靠性 电源设备

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版