智能追光锂电充电系统设计

时间:2014-07-24来源:网络

睡眠模式

内部有睡眠状态比较器,当输入电压低于电池端电压加20mv时,充电器处于睡眠模式,只有当输入电压上升到电池端电压50mv以上时,充电器才离开睡眠模式,进入正常工作状态。

输入电压源限流模式

当CN3063输入电压源的电流输出能力小于所设置的充电电流时,器件内部的8位模拟-数字转换电路根据输入电压源的电流输出能力自动控制充电电流,此时实际充电电流可能小于所设置的充电电流,但是在满足施加在CN3063的第4管脚VIN的电压不低于最小工作电压4.35的前提下,能够使得充电电流最大化。在这种模式下用户不需要考虑最坏情况,只要根据输入电压源的最大电流输出能力设置充电电流就可以了,非常适合利用太阳能电池等电流输出能力有限的电压源对电池进行充电。

充电结束

在恒压充电状态,当施加在CN3063的第4管脚VIN的电压大于4.45V,并且当充电电流小于所设置的恒流充电电流的1/10时,充电周期结束。在输入电压源限流模式,即使充电电流小于所设置的恒流充电电流的1/10,充电也将继续,不会结束。这样可以保证即使在输入电压源的电流输出能力很微弱的情况下,也能为电池充电。

预充电状态

在充电周期的开始,如果电池电压Kelvin检测输入端(FB)的电压低于3V,充电器处于预充电状态,充电器以恒流充电模式充电电流的10%对电池进行充电。

电池电压Kelvin检测

CN3063有一个电池电压Kelvin检测输入端(FB),此管脚通过对芯片内部的精密电阻分压网络连接到恒压充电的误差放大器。FB管脚可以直接连接到电池的正极,这样可以有效避免电池正极和CN3063的第5管脚之间的寄生电阻(包括导线电阻,接触电阻等)对充电的影响。这些寄生电阻的存在会使充电器过早的进入恒压充电状态,延长充电时间,甚至使电池充不满,通过使用电池电压Kelvin检测可以解决这些问题。如果将此管脚悬空,那么CN3063一直处于预充电状态,充电电流为所设置的恒流充电电流的1/10。

设定恒流充电电流

在恒流模式,计算充电电流的公式为

其中,表示充电电流,单位为A。表示ISET管脚到地的电阻,单位为欧姆。

在本系统中,设置500mA的充电电流,因此,=1800V/0.5A=3.6KΩ。

电池温度监测

为了防止电池温度过高或者过低对电池造成的损害,CN3063内部集成有电池温度监测电路。电池温度监测时通过测量TEMP管脚的电压实现的,当TEMP管脚的电压大于46%*VIN超过0.15秒时,芯片正常工作;如果TEMP管脚的电压小于46%*VIN超过0.15秒时,则CN3063认为电池的温度超出范围,充电将暂时停止,当TEMP管脚的电压又重新大于46%*VIN超过0.15秒时,充电会继续。

本系统中将TEMP管脚接到地,禁用电池温度监测功能,并以DS18B20作为替代,实时监测锂电池电压,方便观察。

再充电

当一个充电周期结束时,如果电池电压Kelvin检测输入端的电压低于再充电阀值时,CN3063自动开始一个新的充电周期。

恒流/恒压/恒温充电

采用恒流/恒压/恒温模式对电池充电,在恒流模式中,如果CN3063功耗过大,器件的结温接近115°C,放大器Tamp开始共工作,自动调整充电电流,使器件的结温保持在大约115°C。

漏极开路状态指示输出端

有两个漏极开路状态指示端,这两个状态指示端可以驱动发光二极管或单片机端口。用来指示充电状态,在充电时,为低电平;用来指示充电结束状态,当充电结束时,为低电平。当电池的温度处于正常温度范围之外超过0.15秒时,管脚都输出高阻态。当电池没有接到充电器时,充电器很快将输出电容充电到恒压充电电压值,由于电池电压Kelvin检测输入端FB管脚的漏电流,FB管脚和BAT管脚的电压将慢慢下降到再充电阀值,这样在FB管脚和BAT管脚形成一个纹波电压为100mv的波形,同时输出脉冲信号表示没有安装电池。当电池连接端BAT管脚的外接电容4.7uF时,脉冲的周期大约为10Hz。系统中管脚接红色LED, 管脚接绿色LED。

表3列出了两个状态指示灯及其对应的充电状态。

表3状态指示灯与充电状态关系

(5)温度监测

方案一:采用热敏电阻做传感器件。热敏电阻与温度的变化是非线性的,而8位单片机的计算能力有限,在使用时,需摒弃复杂的计算公式,改用查表法算取温度。温度的精度值取决于AD采样精度,温度表格精度和热敏电阻精度。

方案二:采用DS18B20温度传感器。使用时,只需编写严格的时序,即可直接读出温度值,低四位进行小数近似化处理,可以得到较为准确的温度值。

由于热敏电阻与温度的变化是非线性的,而且无法使用复杂的计算公式得出精准的温度值,我们采用方案二,当锂电池温度大于60°C时,停止充电。

DS18B20的应用电路如图15所示。

图15温度监测

(6)照明灯控制

方案一:通过检测光敏电阻阻值的大小,判断白天黑夜,并根剧光敏电阻阻值调节照明灯亮度。

方案二:通过检测太阳能电池板输出电压,来判断白天黑夜,并进一步调节照明灯亮度。

比较两种方案,方案二中太阳能电池板输出电压不仅会受到外界光强的影响,还跟温度高低等其他因素有关系,为避免误判断,我们采用方案一,且方案一中,根据光敏电阻阻值大小,更易于使用脉宽调制(PWM)模拟DA功能。

应用电路如图16所示。

图16照明灯

当检测到外界光强低于阀值时,打开照明灯,并使用STC12C5A60S2单片机的一路PCA输出PWM波,模拟DA功能,程序如下:

void SetLed(uchar PWM_LOW)

{

CCON=0; //PCA控制寄存器初始化

CL=0; //PCA计数器低8位清零

CH=0; //PCA计数器高8位清零

CMOD=0X02; //模式设置

CCAP0H=CCAP0L=PWM_LOW; //将光敏电阻值送给PCA捕捉/比较寄存器

CCAPM0=0X42; //设置PCA工作模式

CR=1; //启动PCA计数器

}

rg0=GetADCResult(2); //光敏电阻值采集

if(rg0>=0xa0) //电阻值大于阀值时,调光

SetLed(rg0-0xa0);

else

SetLed(0); //否则,发送0,即关闭照明灯

1 2 3 4 5 6 7 8 9

关键词: 智能追光 太阳能 CN3063 锂电池充电 AVR单片机

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版