EHF频段上变频器的设计及实现

时间:2014-02-28来源:网络

Agilent 公司的微波设计软件GENESYS 中的频率规划(What IF) 综合设计工具能够根据设定的频率关系,自动寻找无杂散或杂散最低的区域,选择最优的中频频点,以下的两次中频选择就是应用该软件实现的。

2. 1、中频频率选择

(1) 第二中频频率IF2 选择

使用频率规划工具,设定混频的射频输出频率,以及射频带宽、中频带宽以及本振功率,就可以寻找无杂散或杂散最低的区域。中频选择仿真结果如图2 所示。图中①区域为没有杂散区域; ②区域为存在杂散区域。可以看出杂散电平小于- 60 dBc 的中频可供选择的区域为1. 0~20. 5 GHz。根据以下2 条原则就可以确定中频IF2 的频率:① 工作在毫米波频 段的混频器,可供选择商品器件的不多,工作在EHF 频段的混频器中频频率一般不大于4. 5 GHz ,因此IF2 的频率必须小于4. 5 GHz ; ② 同时因为设备中频IF2 带宽为2 GHz , 为了避免2 ×IF2 +LO3 信号进入工作带内,中频频率的最低频率必须选择在2 GHz以上。综合考虑将中频IF2 选择为2 GHz 以上,4. 5 GHz以下。

(2) 第一中频频率选择

当IF2 选定后,假设设备采用2 次变频,则IF1频率为中频输入IF(设备输入频率为L 频段信号) 。此时IF 与IF1 相隔较近,导致本振频率无法抑制,所以方案必须采用3 次变频。只有IF1 选择为一个较高的中频上,才能避免出现上述的问题。

从IF1 中频选择仿真分析结果如图3 所示。图中①区域为没有杂散区域; ②区域为存在杂散区域。在0~17 GHz 范围内,只有0~450 MHz 范围内没有杂散,在其他频率内均存在不同组合的杂散分量。当频率超过12. 35 GHz 后杂散分量只有- 2IF1 +3LO1 这一个杂散,这一杂散可以通过降低IF1 的电平,使得杂散电平降低到设备的要求值。

因为L/ Ku 模块方案已经很成熟,最终中频IF1频率选择在Ku 频段,缩短了设备设计周期。

2. 2、杂散分析

确定中频频率后, 进行杂散分析。第1 次混频后的杂散分析,在IF1 带内无杂散频率产生,带外主要杂散为f (2 ,1) , 通过混频后增加带通滤波器, 完全可以将杂散电平抑制到很低的水平, 可以忽略。需要注意的是,LO1 本振频率多采用倍频的方案实现,为了防止LO1 本振的基频频率的多次谐波随LO1 本振进入混频器,LO1 本振输出后要增加滤波器,用来滤除无用的LO1 本振谐波。

第2 次混频杂散分析,在IF2 频率范围内,主要杂散为f ( - 2 ,- 2) 、f (3 ,- 2) 、f ( - 4 ,3) 等组合频率,带内的组合杂散最低次数为4 次,由于第2 次混频采用双平衡混频器,m 为偶数的被抵消。虽然7 次产物落入带内, 但可以通过减小输入的IF1 电平,来控制组合干扰的幅度,完全可以满足变频链路通用指标的要求。

第3 次混频后的杂散分析,在EHF 频率范围内主要杂散信号为f (1 ,2) 。通过调整中频入口电平,可以降低杂散信号电平幅度,同时混频后增加腔体滤波器,对杂散也有一定的抑制。通过以上分析,只要控制好各级混频器的输入电平,杂散可以控制在要求的范围内。

1 2 3

关键词: EHF频段 上变频器 混频器 杂散分析

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版