智能天线技术改善频谱使用效率

时间:2014-01-17来源:网络

虽然天线阵列是射频前端的很重要的设备,但自适应阵列天线技术最重要的部分还在于基带处理部分。基带部分将自适应天线阵接收到的信号进行加权和合并,从而使信号与干扰加噪声 比最大。基带处理部分采用复杂的自适应算法。目前已经有多种有关时域和空域的算法提出,如通过时域获得天线最优加权算法有:最小均方算法(LMS) 、取样协方差矩阵的直接求逆(DMI)、递归最小均方误差(RLS)算法、恒模(CM)算法等;通过在空域对频谱进行分析以获得信号到达方位角(DOA) 估计的算法有:多信号分类法(MUSIC)算法、旋转不变技术信号参数估计法(ESPRIT)算法等。

下图为自适应智能天线实现的简单原理图:

二、空分多址技术(SDMA)的核心——自适应天线技术

近 几十年来,无线通信经历了从模拟到数字,从固定到移动的重大变革。而就移动通信而言,为了更有效地利用有限的无线频率资源,时分多址技术(TDMA)、频 分多址技术(FDMA)、码分多址技术(CDMA)得到了广泛的应用,并在此基础上建立了GSM和CDMA两大主要的移动通信网络。就技术而言,现有的这 三种多址技术已经得到了充分的应用,频谱的使用效率已经发挥到了极限。空分多址技术(SDMA)则突破了传统的三维思维模式,在传统的三维技术的基础上, 在第四维空间上极大的拓宽了频谱的使用方式,使得移动用户仅仅由于空间位置的不同而复用同一个传统的物理信道成为可能。并将移动通信技术引入了一个更为崭 新的领域。而实现它的技术核心则是自适应智能天线技术。

自适应智能天线技术是一种软件技术,是当今软件无线电技术的基础。它使用了自适应 阵列信号处理软件,对所有用户的无线信号进行高速时空处理从而实时调整无线信号的传输,为每位用户提供优质的上行链路和下行链路信号。即使基站在充满噪音 和干扰的环境中,也能监测并保持与多个不同的用户的通信连接,从而实现空分多址(SDMA)的效果。在网络中,这种先进的基站性能可以用来增加基站覆盖范 围,从而降低网络成本,提高系统容量,最终达到提高频率使用效率的目的。SDMA可以与任何空间调制方式或频段兼容,因此具有巨大的实用价值。

空 分多址的基站组件就是一种先进的自适应天线阵列系统。自适应阵列天线系统持续监控其覆盖的范围,针对不断变化的无线环境(包括移动用户和干扰信号),系统 将提供有效的天线发送和接收模式来跟踪用户,为用户所在的方向提供最大的增益,同时抑制其他用户的干扰,以适应用户的位置移动。

SDMA系统的处理程序如下:

1.系统将首先对来自所有天线中的信号进行快照或取样,然后将其转换成数字形式,并存储在内存中。

2.计算机中的SDMA处理器将立即分析样本,对无线环境进行评估,确认用户、干扰源及其所在的位置。

3.处理器对天线信号的组合方式进行计算,力争最佳地恢复用户的信号。借助这种策略,每位用户的信号接收质量将大大提高,而其它用户的信号或干扰信号则会遭到屏蔽。

4.系统将进行模拟计算,使天线阵列可以有选择地向空间发送信号。在此基础上,每位用户的信号都可以通过单独的通信信道—空间信道实现高效的传输。

5.在上述处理的基础上,系统就能够在每条空间信道上发送和接收信号,从而使这些信道成为双向信道。

利 用上述流程,SDMA系统就能够在一条普通信道上创建大量的频分、时分或码分双向空间信道,每一条信道都可以完全获得整个阵列的增益和抗干扰功能。从理论 上而言,带有m个单元的阵列能够在每条普通信道上支持m条空间信道。但在实际应用中支持的信道数量将略低于这个数目,具体情况则取决于环境。由此可 见,SDMA系统可使系统容量成倍增加,使得系统在有限的频谱内可以支持更多的用户,从而成倍地提高频谱使用效率。

1 2 3

关键词: 智能天线 频谱 自适应阵列天线 空分多址 SDMA 软件无线电

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版