基于LPC2103的三相电信号数据采集系统的设计方案

时间:2013-12-13来源:网络
电机的额定电流来进行。其中:由于电机在启动瞬间其冲击电流是额定电流的5~7倍,测试表明,冲击电流的时间将维持十几ms,考虑到保护后续测量电路的安全,设计了限幅电路,保证测量信号始终在±5 V范围内。电流获取电路如图4所示。

基于LPC2103的三相电信号数据采集系统的设计方案

与电压测量相同,采用电压跟随电路以减小信号的衰减和损耗。限幅电路由RC1,U3B,U3C和二极管D1,D2组成,其中RC1 为限流电阻。当输入信号Ui 处于[-5 V,5 V]范围内,U3B,U3C的输出均为正饱和电压,此时D1,D2均截止,输出信号Uo=Ui.当输入信号Ui不在[-5 V,5 V]范围内时:

(1)当输入信号Ui>5 V 时,U3C 的输出为负饱和电压,此时D1导通,U3C成为跟随电路,输出信号Uo=5 V.

(2)同理,当输入信号Ui-5 V时,U3B的输出为低电平饱和电压,此时D2导通,U3B 成为跟随电路,输出信号Uo=-5 V.由此,限幅电路将输入信号限制在了[-5 V ,5 V]范围内,且信号不会失真。

与电压获取电路相似,在限幅电路后将信号进行整流处理,之后将送入核心处理器的A/D采样环节。1.3 数据采集与存储模块

数据采集的部分采用了LPC2103内置的10位A/D,将经过调理的三相电信号提供给其A/D引脚即可。

根据数据采集系统的设计要求,本设计开发的数据采集系统,将在不方便与上位机通信的情况下,能够在下位机中保存大量的实时数据。由于采集模块采用了LPC2103内置的10位A/D,其A/D数据寄存器为32位寄存器,为节省数据运算时间和提高采样频率,每次采样的结果保留低16位,即每个采样点的数据为16 b=2 B.系统将采样频率设置为1 024 Hz,在这样的采样频率下,8 通道1 s采集的数据量:1 024 × 8 × 2 B = 16 KB ,考虑到长时间采集下的较大数据量和数据存储时的高传输率,数据的存储使用SD卡完成。

SD卡与微控制器之间的通信有SD和SPI两种接口模式[4],由于LPC2103内部拥有串行外设SPI总线,且使用SPI总线时能够节省主控制器的I/O 资源,因此本设计采用SPI接口方式实现SD卡与主控制器的通信,接口电路如图5所示。

基于LPC2103的三相电信号数据采集系统的设计方案

将LPC2103 配置为主机,SD 卡为从机,在SPI模式下完成数据传输。控制器的GPIO 端口P0.9连接SD 卡片选线SD_CS;主控制器时钟信号线SCK0 连接SD 卡SCK 引脚,保证主从设备间的时钟同步;控制器的主机输出从机输入线MOSI连接SD卡的数据输入;控制器的主机输入从机输出线MISO 连接SD 卡的数据输出信号线。

2 系统软件开发

用户通过按键选择数据采集系统运行模式。运行模式1,系统采集三相电信号,并将实时数据通过串口发送至上位机;运行模式2,系统采集三相电信号,并将实时数据保存至SD 卡,不与上位机进行通信。主程序流程图如图6所示。

基于LPC2103的三相电信号数据采集系统的设计方案

程序的初始化主要包括:GPIO端口、定时器模块、A/D 模块、SPI接口单元、UART接口单元、SD卡等6大模块。对SD卡的操作按照其数据手册,通过主控制器发送给SD 卡相应的命令来完成。SPI模式下,SD卡的指令由6 B组成,主控制器向SD卡发送指令时,高位字节在前,低位字节在后。操作流程如图7所示。

基于LPC2103的三相电信号数据采集系统的设计方案

本设计使用了文件系统为FAT16 类型的SD 卡。FAT16 文件系统的系统分区由引导扇区、FAT 表、FDT表和文件数据区四大部分组成,数据的读/写均以扇区为单位。由于SD 卡系统分区的前三部分是十分重要的,一般不能将数据写入这三部分所在的扇区内,否则会使得SD卡无法被电脑识别,因此在向SD卡写入数据前,首先需找到引导扇区的位置,并根据其中的内容计算FAT、FDT 以及数据簇的起始地址和大小。为节省LPC2103 的内存,设置SD 卡写数据为单块写模式。写SD同样要遵循SD卡写块时序。

3 测试结果

本设计的上位机数据测试软件在LabVIEW 环境下开发,针对串口发送的数据和保存在SD 卡中的实时数据进行不同的开发,其数据结果如图8所示。数据测试软件将串口发送的数据转换至[-5 V,5 V]之间进行显示。图中,通过标定换算,数据采集的结果是准确有效的。

基于LPC2103的三相电信号数据采集系统的设计方案

因此,方案所设计的三相电信号

1 2 3

关键词: LPC2103 数据采集系统

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版