不损失SNR前提下 高压信号转换成低压ADC输入

时间:2013-09-28来源:网络
: normal; LETTER-SPACING: normal; webkit-text-size-adjust: auto; orphans: 2; widows: 2; webkit-text-stroke-width: 0px">  不损失SNR前提下 高压信号转换成低压ADC输入nOPA = 运放的输入噪声

  f-3dB = 单极点-3dB频率

  对于给定的ADC满量程范围、ADC输入参考噪声、运放增益,有两个参数会影响到最终的信噪比损失:滤波器截止频率和放大器输入参考噪声。

  如果信号源具有低频成分,可通过设计滤波器使其具有更高的输入噪声容限(在保证低功耗、低成本需求的同时,会牺牲一定的噪声性能)。如果ADC限制了系统带宽,则需要运放具有足够低的输入噪声,以达到SNR的要求。

  举一个例子,输入信号为±10V,而ADC满量程输入为5VP-P,ADC SNR为92dB。此时,放大器衰减系数是4倍(将输入调整到满量程)。数据手册提供的ADC输入噪声是44.4nVRMS。假设滤波器截止频率为10kHz,如果采用输入噪声为10nV/√Hz的运放,则损失信噪比为:

  SNR(loss) = 0.035dB

  如果没有使用滤波器,ADC带宽为10MHz,为了将SNR控制在同等水平,则要求输入噪声为0.3nV/√Hz,设计中很难达到这样的要求。

  对于同样10MHz带宽的ADC,如果我们允许SNR(loss) = 0.5dB,则要求运放噪声指标为4nV/√Hz,这一点很容易做到。

  目前,具有更高集成度、设计更灵活的解决方案允许不同信号范围的输入,轮训采集每个通道时,编程相应通道的输入增益优化SNR。比如,Maxim的MAX1300系列16/14位ADC提供最多8路输入信号,如图5所示。MAX1300可接受双极性输入信号,最高±12V,只需单5V供电,由此减少了外围器件和供电电源数,进而缩小PCB面积。

不损失SNR前提下 高压信号转换成低压ADC输入

  图5. MAX1300 ADC具有可编程输入量程(单电源供电支持双极性输入),
每个采样可编程放大倍数,内部基准。

  12位MAX11131、16通道、3Msps ADC同样提供了设计灵活性。该器件采用SampleSet(注)技术,用户可以灵活配置模拟输入通道的采样顺序,允许多达256种任意扫描顺序(图6)。SampleSet技术还允许以非对称形式设置每个通道的扫描频率,灵活处理各个通道的高/低频信号。

不损失SNR前提下 高压信号转换成低压ADC输入

  图6. MAX11131功能框图,3Msps、12位、16通道ADC提供灵活的SampleSet多路轮询功能。

  总上所述,实际应用中,对于给定的系统带宽和SNR损失容限,可以通过加入一个比例放大器将高压信号转换到ADC满量程范围规定的低压信号。对于多量程输入的系统,采用这种方式可以有效地把不同摆幅信号输入到一个多通道的低压ADC。Maxim提供全面的16位到24位数据转换器方案,并在器件内部集成了抗混叠滤波器,非常适合这类应用。

1 2

关键词: SNR 高压信号 转换成 ADC输入

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版