加速线上工具的功率级设计,助力IGBT特性分析功能提升

时间:2013-09-28来源:网络
: 2; widows: 2; webkit-text-stroke-width: 0px">  此外,线上设计工具还可用于探索替代的解决方案,例如不采用散热器的表面黏着技术。设计改版为指定表面黏着型DPAK封装,而热阻则设在40℃/W环境温度,换言之,设计采用4?6OZ覆铜薄板,孔在IGBT下方,而其他的运作条件则全部相同。

  如图4所示,线上设计工具提供两个IGBT,功率耗散接近图3列出的IGBT,但封装和晶片尺寸都较小,所以其DPAK元件封装较便宜,惟接合温度可能稍高一些,但仍然保持在额定接合温度以内和印刷电路板(PCB)可承受范围以内。若将短路电流时间从10微秒减到5微秒(正好在典型电流感应IC的回应时间之内),更将有助于找到其他可符合这种应用需求,且成本更加合适的元件。

  加速线上工具的功率级设计,助力IGBT特性分析功能提升

  图4 更改工具参数设定,可协助工程师选出更便宜的元件。

  图5显示工具中的两个IGBT与图4相同,再加上一个允许更低功率损耗和更低接合温度的全新IGBT,这个更高效率的IGBT是一种新型的沟槽式(Trench)元件(IRGR4045DPbF),而其他两个都采用平面(Planar)设计。

  加速线上工具的功率级设计,助力IGBT特性分析功能提升

  图5 新一代IGBT具有极低的运作温度,是达成功率级设计关键。

  藉由最新版本的网路设计工具,设计人员可利用IGBT的性能比较,分析和了解更多IGBT的能力。勾选图5中每个型号左边栏位和点击「电流与频率对比图表」按钮后,即可制作出图6中的曲线图,依之前的数字显示,电流和频率是固定的。值得注意的是,在这一曲线图中,当温度有变动时,接合温度是固定的,至于电流就是最终的结果。

  评估系统整体设计 线上工具找出性价平衡点

  如图6所示,线上设计工具非常清楚整理出IGBT的传导特性,其中第一个方案可在低频率的情况下得到更多的电流,表现最优异;还有一点非常清楚的是,载流性能随着频率的增加而下降的速度变快,这也表示切换的损耗变高。熟练的设计人员都知道,快速的切换经常会导致电磁干扰(EMI)问题,并不会变成实质的优点,这种情况在马达驱动应用中尤其显著。

  加速线上工具的功率级设计,助力IGBT特性分析功能提升

  图6 透过电流与效率曲线可呈现IGBT导通和切换性能的关系,便于进行不同元件的比较。

  图6中的表格也提供接合温度和功率损耗的指标数字,根据首个画面显示的输入,图6的座标是在由最大值降低25℃的接合温度下得出,第一个IGBT方案的额定温度为175℃,而其他产品的额定温度则为150℃,这也是该产品的曲线远高于其他两个IGBT的原因。

  实际上,PCB的设计限制将妨碍范例中用于马达驱动的IGBT采更高额定温度,然而,如图5所示,新一代沟槽式IGBT在特定应用中具有最低的运作温度,这正是达成功率级设计最佳化的关键,设计师不仅可省去PCB上的孔并采用4OZ铜板,从而去除一些物料清单(BOM)成本,还可用元件选择器检测到功率耗损和温度造成的影响,将热阻从40℃/W提升到50℃/W,并对结果进行检测。

  此范例显示出新版网路工具在协助设计人员评估其电源系统的整体性能,以及针对成本、效率和可靠度最佳化方面,都比以往的版本更可靠、更有效率。

  导入弹性演算功能 线上设计工具再升级

  尽管

1 2 3

关键词: 线上工具 功率级 助力IGBT 特性分析 功能提升

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版