国外CCD检测技术在工业中的应用与发展

时间:2013-07-03来源:网络


2.2形变测量

尽管利用线阵CCD测量材料变形具有非接触、无磨损、精度高、不引入附加误差、能测量材 料拉伸的全过程,特别是测量材料在断裂前后的应力应变曲线,得到材料的各种极限特性 参数等优点,但只能测量材料拉伸时在轴线方向的均一形变。为此,Scheday,Miehe和Cheva lier等人[13]开展了采用面阵CCD测量材料形变的研究。在此基础上,Stefan Hart mann等人[14]借助面阵CCD研究了橡胶材料在拉伸和压缩时的形变情况。即在圆柱 形黑色测试样品的轴线方向等距标定几个白点,用CCD摄取相应图像并送入计算机进行处理,通过检测白点标记间的距离来计算样品受力时轴向的形变,并通过轮廓检测算法得到轴对 称的圆柱型样品的轮廓尺寸,经过数据校正,可计算出被测样品半径方向上的形变。这种方 法可同时获得两个方向上的形变量,并测量出材料被压缩时的非均一形变。S.Claudinon,P. Lamesle等人[15]采用类似方法研究了淬火钢铁样品在气冷时的形变,解决了高温 样品的尺寸测量问题,并能连续测量不同温度下的形变量,但在低温时,易产生测量误差。J.-M.Siguier等[16]为研究大型科学气球气囊表面材料的性质,利用两个CCD摄像 机摄取被测物体的表面图像,通过立体相关方法获取样品的三维形变。但这种测量方法技术复杂,且在与材料表面垂直的法线方向上获得的数据偏小。

2.3机械磨损度测量

虽然以上方法可以测量各种工件的尺寸或形变,但在测量某些特殊工件时却受到许多限制。例如,在检测高速切割机上的刀具磨损度时,需要将刀具卸下才能测量。为此,一些研究人 员致力于用机器视觉检测刀具磨损程度的研究。2000年,T.Pfeifer和L.Wiegers[17]通过比较各种测量方法,指出基于机器视觉的检测系统最具优势和潜力,并构建了一套由CCD摄像头、照明设备和夹具等组成的非接触检测系统,该系统在适当位置对刀口侧面成像 ,将采集的刀具图像信号输入计算机,计算出刀具磨损轮廓,以此判断刀具磨损级别,确定刀具更换时间。但该系统的图像处理过程复杂,适应范围窄,检测精度和效率也有待提高。2002年,JeonHa Kim等人[18]在此基础上,对误差因素逐一进行了实验分析,确定了最佳光线照射强度、角度、拍摄角度等,并将光源通过光纤插入镜头周围以减小因阴影 产生的误差,使夹具自由转动角度增大,成像设备尺寸缩小,提高了系统的使用范围。同时,通过采用磨损前后刀具横向尺寸差来计算磨损度,大大简化了图像处理过程。对4种不同刀具的实验测量表明,该系统的测量信噪比可达到46 dB,测量精度和速度显著提高,并可实现实时在线测量,但不适合测量几何形状太复杂的刀具。

2.4三维表面测量

由于CCD传感器能同时获取被测表面的亮度和相位信息,因此,将CCD和计算机图像处理技术 与传统的三维表面非接触光学测量方法相结合,可实时测量物体形变、振动和外形。上世纪 90年代初,Yamaguchi等人[19]在斑点干涉测量中使用线阵CCD测量不同材料的帕森比,但线阵CCD只能记录一维正交相关性信息。随着CCD工艺水平的提高,面阵CCD被广泛应 用于三维表面测量[19]。1996年,B.Skarman等[20]提出了相变数字全息 测量法。此后,F.Chesn[21]、C.Quan[22]、P.S.Huang[23]、G.Pedrini等人[24]分别在有关测量方法中应用了CCD技术,从CCD图像中获取相位图的新方法[24,26,27]也相继出现。在条纹图样投影法中采用相变技术时,只能检 测静物表面轮廓,不适用于实时检测振动和变化的表面形状。为此,C.J.Tay等人[28]建立了对低频振动的物体表面进行三维检测的系统,该系统由振荡发生系统、液晶显示 条纹发射器、特殊远心镜头、高速CCD、图像采集卡和计算机组成。系统所用的远心镜头可 以保持放大倍率为常数,使测量结果与被测物体和CCD之间的距离无关,从而减小了测量中 物体振动时因为景深改变而产生的测量误差。同时,采用相扫描方法逐点计算条纹图样相位,可以实时获取被测对象的振动频率和振幅,即时重建物体的表面轮廓,其测量精度可达振幅值的1/500。但该系统只能测量阳纹平面,且要求有高质量的正弦发射条纹和CCD的图像采集频率大于被测物体的振动频率。随后,他们又在阴影莫尔条纹干涉法中应用类似方法 测量振动物体的三维表面,取得较好效果[29]。尽管该方法比数字全息法[30]简单实用,且对测量环境的要求相对较低,但测量范围受到CCD采集速度的限制,对高速振动和无规则形变的物体表面测量并不实用。

2.5高温测量

物体的辐射光波长和强度与物体温度有着特定的关系,因此CCD作为一种光电转换器件,可用于温度测量。1993年,Tenchov等人[31]采用CCD间接测量溶液表面温度;1995年,K.Y.Hsu和L.D.Chen[32]用可测量红外波段的加强型CCD测量液态金属的燃烧火焰温度,但其测量误差达到400~200K,缺乏实用性。此后,利用红外CCD测量温度场成为CCD测温研究的主流。2001年,Takeshi Azami等人[33]利用CCD的亮度波动信息来研究 熔融硅桥表面的热流状况,获得了较好的结果。2002年,D.Manca等人[34]提出了一种利用红外CCD测控燃烧室火焰温度场的实用方法。2003年,G.Sutter[35]等人利用加强型CCD测量近似黑体的物体表面发出的某一波长的单色光,以此得到物体的辐射温度,所得测量结果与物体的真实温度之间的差别几乎可以忽略不计,并将其用于测量直角高 速切割机的刀具温度场,但作者未具体说明图像处理和温度计算方法,也未进行误差分析, 其实验误差达16 ℃。这种方法测量不同范围的温度时,需要寻找不同的最佳波长,使用频带很窄的滤波片获取单一波长的光辐射信号。B.Skarman等人[36,37]于1996年提出 用CCD拍摄流体的全息图,通过图像处理技术重建流体的三维温度场,由于当时的CCD采集速度、图像处理速度和储存速度都比较低,激光干涉质量也不高,使该方法缺乏实用性;到19 98年,该方法进入实用阶段,能测量稳定透明液体的三维温度,并得到流速和流体密度等数 据。2002年,C.Hhmann等[38]利用高分辨率温度传感液晶颜色随温度变化的特性 对被测区域感温,然后用彩色CCD摄取液晶表面的颜色图像来间接测量液体蒸发时弯月面的 温度。此方法可实现小面积的温度测量,但需要进行精确的校正。还有学者提出利用CCD配 合激光感应磷光器测量温度[39]。事实上,由CCD的光谱响应特性、光电转换特性可知,利用RGB输出值可得到被测物体表面图像中的亮度和色度信息,并根据比色测温原理计算出物体的表面温度场。虽然有人提出了基于CCD测温系统的三维温度场构建算法[4 0],但直接利用彩色CCD测量温度的仪器还处在实验研发阶段。尽管如此,由于CCD技术能测量运动物体的温度,给出二维或三维温度场,实现非接触高温测量,因此,CCD测温技术有很大的发展潜力和应用前景。

3 结论

综上所述,CCD应用技术已成为集光学、电子学、精密机械与计算机技术为一体的综合性技术,并被广泛应用于现代光学和光电测试技术领域。事实上,凡可用胶卷和光电检测技术的地方几乎都可以应用CCD。随着半导体材料与技术的发展,特别是超大规模集成电路技术的不断进步,CCD图像传感器的性能也在迅速提高,将CCD技术、计算机图像处理技术与传统测量方法相结合,能获取被测对象的更多信息,实现快速、准确的无接触测量,显著提高测量技术水平和智能化水平,因此,CCD技术必将以其突出的优点而在工业测控、机器视觉、多媒体技术、虚拟现实技术及其他许多领域得到越来越广泛的应用。

参考文献
[1]王庆有.CCD应用技术[M].天津:天津大学出版社,2000.
[2]王跃科,杨华勇.CCD图像传感技术的现状与应用前景[J].光学仪器,199 6,18(5):32-36.
[3]科学CCD的过去、现状和未来[J].激光与光电子学进展,1995,(10):8-10.
[4]晏磊,张伯旭,常炳国.CCD图像传感器及其数字相机技术[J].信息记录材料,2002,3(1):45-49.
[5]凌云光视数字图像公司CCD CMOS图像和机器视觉产品手册[M].
1 2

关键词: CCD 检测技术 图像传感器

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版