浅析在Qi标准下设计的5W无线电源设计

时间:2013-04-26来源:网络
0px; FONT: 14px/25px 宋体, arial; WHITE-SPACE: normal; ORPHANS: 2; LETTER-SPACING: normal; COLOR: rgb(0,0,0); WORD-SPACING: 0px; PADDING-TOP: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">  双接点解决方案是无线电源输出及接收器之间的介面成本最低的一种,可提供有限的功能。仅提供两个接点时,只能连接无线电源(亦即5伏特输出),并且接地至行动装置,而行动装置必须自行侦测何时切换转接器电源及无线电源。这种解决方案的主要缺点是行动装置无法向发送器指示终止充电。

  在一般的无线电源系统中,充电循环可在使用者夜间就寝时开始,而且充电一般大约持续两小时。一旦充电完成时,按照WPC通讯协定的定义,接收器即可指示终止供电给发送器,以便发送器能进入低功耗的待机模式。接收器只能透过侦测输出电流低于特定阈值的方式,侦测双接点解决方案终止。虽然这种方法能使发送器进入待机模式,缺点是供应电流是系统电流与充电电流的总和。

  三接点配件加入控制讯号

  三接点解决方案是在双接点解决方案的基础上,在无线电源及接地之外加入控制讯号。由行动装置驱动的无线电源接收器所提供的输入控制讯号,使行动装置内部的充电器侦测充电何时应终止,并且向接收器通知此情况。接收器即可向发送器传达终止电源,使其进入低功耗的待机模式。由于行动装置是由电池持续供电,因此可在不定时向无线接收器确认终止,以便整个充电週期的发送器整体耗电量保持在相当低的程度。此外,发送器可使用接收器的终止电源资讯,让使用者知道充电已终止,例如藉由发光二极体(LED)灯号。这种方法确定终止情况的准确度也高于双接点解决方案。

  四接点配件方案提供选项最多

  四接点解决方案所提供的选项,远比前述的任何解决方案多。其中一个选项是提供两个控制讯号输入,一个讯号用于向发送器通知终止。另一个讯号用于通知行动装置出现故障情况。

  图2显示另一种四接点实作。在此情况下,外部转接器可以是装置接收器的输入,而且接收器单结型场效应电晶体(FET)闸极驱动讯号,可从接收器输出,并连接行动装置。如此一来,接收器即可侦测转接器,并关闭无线电源发送器,然后将转接器电压直接施加于接收器。以下各段将详细说明转接器多工器架构。

  行动装置电源多工器架构剖析

  市场开始出现无线电源配件时,有线转接器连接埠将与无线电源输入同时并存,需要在无线及有线电源供应之间使用电源多工器,图3显示电源多工器架构范例。这种方法运用接收器配件侦测接收器电压(AD),并在接收器电压出现时提供闸极驱动(AD_EN)。FET必须以背对背(Back-to-Back)配置接线,才能在开关关闭时阻绝逆向及正向传导。如果有转接器,无线电源接收器即停用电源传输,并透过转接器电源将闸极驱动保持启动。这种方法需要配件与行动装置之间四个接脚的介面(无线电源、AD、AD_EN及GND)。

  浅析在Qi标准下设计的5W无线电源设计

  图3 单一背对背FET的电源供应多工选项

  为减少电源供应配件与行动装置之间所需的接脚数,可运用自动电源多工器。图4显示这类架构,其中不再需要AD及AD_EN连线。透过VSNS连线可优先使用有线电源路径,如果在VSNS侦测到电压,启用有线电源路径,否则将启动无线电源路径。若要使接收器电子装置侦测转接器连接埠,终止无线电源传输,必须监视电源的输出电流。藉由监视输出电流,即可在无线电源路径开关关闭时,侦测真正的轻载,例如接近零输出电流,接收器会将指令传送至发送器,以终止电源传输。

  浅析在Qi标准下设计的5W无线电源设计

  图4 运用自动切换的电源供应多工选项

  电池组配件整合电子装置/接收器线圈

1 2 3

关键词: Qi标准 无线充电 电源

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版