Agent在城市交通系统中的应用

时间:2012-10-31来源:网络


该结构的协调控制策略在TRYS 基础上进一步下放到了路口级,建立了路口Agent,每个路口成了一个智能的知识系统,可及时根据路口交通状况进行控制策略的实时部署与调整,更好地适应了交通系统动态性、实时性强的特点,对突发性交通流的变化有很好的适应和调节能力。

2.2 完全分布式结构

在完全分布式结构的系统中,Agent 凭借自身的知识和智能与相邻区域Agent 协调共同完成路口的管制。最初的应用就是西班牙的TRYSA2 系统,如图3 所示。TRYSA2 Agent 有一个控制计划集,每个计划都被赋予了能够减轻交通压力的效用值。系统可通过评估相关Agent 的计划效用值合成系统最优的解决方案。Oliveira 、承向军、杨兆升等学者也先后提出了以路口Agent 为基本控制单元的完全分布式控制结构,系统中的Agent 都具备了一定的存储、匹配和智能计算功能,可依靠良好的协调算法实现多Agent 之间的协调与合作以达到整体优化和控制的目的。

图 3 TRYSA2 架构图。

2.3 两种架构的性能比较

分层递阶式充分体现了集中和分散控制的有机结合,考虑到了全局利益,可使协调有目的地进行,但是区域Agent 和主控Agent 的实现稍显复杂。完全分布式具有反应快速、灵活性强等特点,可充分发挥Agent 的自治性、协调性,但由于Agent 自身能力有限、系统的知识又过于分散,解决全局问题的能力略显不足,Agent 间的协调机制会对系统性能产生较大影响。在扩展性上,完全分布式只需把新Agent 注册到其他Agent 中并修改相应的方案和知识库即可将新Agent 扩充到当前的Agent 群体中,而分层递阶式需要整合区域控制中心和主控中心,重新赋予各Agent优先权关系。在协作复杂度上,分层递阶式从每一个Agent 控制方案中选择一个本地最优的方案,完全分布式在所有的Agent 中通过搜索策略来查找最佳方案,因此后者工作量较大。

2.4 多Agent 的协调控制与优化

多Agent 通过协调实现系统的分布式并行运行,提高任务的执行效率。在基于多Agent 的ATMS 中,有三种协调方式:①建立专门的协调Agent;②将协调行为分散至各Agent 中,由Agent 自主地完成;③集中与分布相结合的方法,Agent 自身即可以完成某些协调行为,又可以接受高层Agent 制定的规划。当前常用的协调方法有黑板模型、博弈模型、协调器、交换意见等。

黑板模型信息传输量大,对信息传输的稳定性也有一定的要求,适用于简单的分布式多路口控制。博弈论模型适用于分层递阶结构的上下级Agent 间和完全分布结构的同级Agent 间的协调,但由于重复博弈过程中需要进行复杂的均衡点收敛控制,所以基于交通信息博弈的计算量较大。协调器可基于一定的目标将同级和下级Agent 产生的提案合成全局的提案。协调器降低了系统的通信量和其他Agent 的实现复杂度,但却增加了协调器Agent 自身的设计复杂度和计算量。交换意见法对系统通信的稳定性有很大的要求,当单个Agent 节点出现通信故障时,系统将无法正常工作。

从上述几种方法的分析中可以看到,协调过程需要传输大量数据,因此容易造成传输网络的拥塞。目前,很多学者都采用强化学习的方法来优化本地的交通信息。强化学习方法是以环境提供的加强信号作为性能评价的反馈,完成从状态到行为的映射的学习,特别适合处理不断变化的路网环境。Baher、欧海涛等都基于强化学习研究了实时自适应的交通信号控制,减少路口节点间的大量通讯需求,增强了决策的可靠性。

2.5 相关应用研究

Ronald通过将分离独立的交通设施建模成能互相协作的Agent,研究了动态交通管理设备互相协作的可能性。Filippo实现了一种基于多Agent 架构的交通管理系统CARTESIUS,在分析偶发性阻塞和在线制定集成控制方案过程中展示了良好的协作推理和解决冲突的能力,可为交通管理人员协调多区域间的快车道和地面街道的路网阻塞提供实时决策支持。

Bo Chen等人将移动Agent 技术融入到交通管理系统中,增强了处理不确定事件和环境动态变化的能力,提出了一种基于柔性Agent 的实时交通检测和管理系统。

3 多Agent在ATIS中的应用

ATIS 可以影响出行行为,增强路网性能。当前采用Agent 技术研究ATIS 主要是针对不同的出行需求构建各式智能的出行信息系统,为出行者提供高质量的出行信息和导航服务;另外是研究ATIS 条件下的出行者行为以及ATIS 对城市交通的影响。

3.1 基于Agent 的典型出行信息系统框架

为实现路网管理者和出行者之间的有效协调,需要在不严重影响个体出行者的使用偏好(出行类型、路径选择、离开/到达时间等)基础上有效地基于时空二维分配路网。基于此,Adler 和Blue 研究了智能出行信息系统(IT IS),专为出行者提供出行计划和导航辅助信息,提出一种代表出行者的车载智能导航Agent,可以学习、定义并校准路径和出行计划偏好。在此基础上,他们又提出基于多Agent 的交通管理和路径导航协作系统(CTMRGS)的概念框架,使路网管理者、信息提供者和出行者之间能有效的协调和沟通。系统采用原则协商指导出行者Agent 和信息提供者Agent 之间的交互,找到一个时最优的出行方案,最后指出更多的智能将会被用来捕捉和呈现出行者的真实意图和行为。

3.2 ATIS 影响下的基于多Agent 仿真的出行者行为研究

ATIS 的有效性取决于系统提供信息的能力以及出行者对出行信息的反应。因此,了解出行者的行为及其在出行信息下的决策过程便显得尤为重要,这将有助于设计出高效的ATIS.目前,国内外很多学者都采用Agent 仿真方法研究ATIS 环境下的出行者行为。

Dia首先提出利用多Agent 仿真来研究实时交通信息影响下的驾驶员行为。通过对驾驶员行为(特性、心理、知识、偏好等)的调查采用BDI(信念-渴望-意图)结构建模,配合交通仿真组件评价交通实时信息对驾驶员行为的影响。Rossetti基于BDI 架构提出了基于DRACULA(一种结合用户学习和微观模拟的动态路径分配模型)的多Agent 扩展模型对出行者进行建模,允许出行者对出行路径和离开时间做出理性选择。

驾驶员的行为会影响到ATIS 系统收益和系统的整体性能。Rossetti 基于谓词逻辑表达方式对出行者Agent 建模,使决策过程中呈现了更多的出行者心理因素。仿真结果表明,系统的整体性能会受到出行信息需求和交通网络拓扑结构的影响,当出行信息单独向个体提供的时候,总体影响可以得到很大改善。

1 2 3

关键词: 交通管理 Agent 公交运行 状态检测

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版