静止无功补偿器电压调节器仿真与实验研究

时间:2012-10-22来源:网络

摘要:为了达到调节静止无功补偿器对所连接母线电压的目的,针对静止无功补偿器(SVC)电压调节器采用线性PID控制策略的限制,设计了基于电压差值加权控制策略的电压调节器。该加权控制策略采用了三部分传递函数计算SVC装置等效电纳,并通过电路仿真模型验证算法并进行谐波分析。通过闭环的物理-数字仿真系统对所设计的电压调节器进行功能测试和研究。仿真结果表明该方法的有效性。
关键词:静止无功补偿器;加权控制策略;谐波分析;电压调节

0 引言
随着我国经济的发展和各种新型电力设备的应用,电网负荷急剧增大,感性无功也不断增加。尤其是冲击负荷、非线性负荷容量的持续增长,加上普遍应用的电力电子和微电子技术,使得电网发生电压波形畸变,电压波动闪变和三相不平衡等,造成电能质量降低,网络损耗增加等不良影响。在输电系统安装并联动态无功补偿装置,是提高输电系统传输能力,提高电力系统暂态稳定性,改善系统动态性能,阻尼电力系统振荡的有效手段。
为了提高现代电力系统的动态稳定极限和提供更好的潮流控制,人们引入了柔性交流输电(FACTS)技术。随着FACTS技术的广泛应用和发展,孕育了许多基于FACTS的产品,基于晶闸管控制电抗器(TCR)的静止无功补偿器(StaticVarCompensator)就是实际应用最广泛的一种。SVC的重要作用是实现平稳的电压控制、无功功率补偿、改善电网电压不平衡度、抑制电压闪变等。
SVC电压调节器的主要作用是处理测量到的系统变量,产生一个与补偿所需无功功率成正比的输出信号。电压调节器可根据SVC的具体应用,采用不同的控制变量和传递函数来实现。现今用于实际输电系统无功补偿的SVC装置电压控制器大多采用的是线性PID控制器,但其只能对测量的电压与参考值电压的差进行控制。对调节期间的电压暂态响应无能为力,改变任何参数只能改变某一性能指标,比如响应时间、超调量等。
本文提出一种采用闭环PI调节与其他加权控制策略的电压调节器综合控制策略,通过将三部分不同的传递函数组合起来,一部分为闭环PI调节,另外两部分传递函数类似于超前滞后调节策略。最后通过仿真和实验研究算法有效性。

1 SVC电压调节器工作原理设计
SVC电压调节器的主要作用是处理测量到的系统变量,产生一个与补偿所需无功功率成正比的输出信号。电压调节器可根据SVC的具体应用,采用不同的控制变量和传递函数来实现。
电压调节器的PI型调节器的传递函数如下:
c.JPG
式中:KV为电压凋节器的稳态增益;TV为电压调节器的积分时间常数。KV和TV具体数据在对整个系统进行仿真优化后确定。
电压调节器的作用过程可描述为:将测量所得到的控制变量与参考信号Vref相比较,然后将误差信号输入到控制器的传递函数,控制器输出一个标幺值电纳Bref相比较,这个信号的大小应可以使控制误差减小,并达到稳态误差为零,然后电纳信号Bref被传送到触发脉冲发生电路。SVC电压调节器与SVC控制系统的原理图如图1所示。

d.JPG

1 2 3

关键词: 无功补偿 电压调节器 仿真 实验

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版