DSP架构应对电网谐波污染分析的挑战

时间:2012-08-28来源:网络

顶层DSP架构

上述DSP模块已添加到一个根据基本公式计算总RMS值和功率的现有架构。我们还加入了一个用于计算多个电源品质因数的元件。首先,我们计算谐波失真(HD),以便根据基波RMS值归一化所有谐波RMS值。然后,利用总RMS值和基波RMS值,我们根据标准定义计算总谐波失真加噪声(THD+N)。最后,根据有功功率与视在功率的比值,提取所有功率因数。三个相位并行执行所有这些信号处理,但谐波分析模块是例外,任一给定时间只能将该模块分配给某一相位。

通过计算谐波功率因数,可以找出电网中的谐波源。虽然业界仍然对查找主要谐波源的最佳方法存在争议,但是其中一种传统方法是基于“有功功率的流动方向”。这相当于确认该特定谐波频率在系统某一点或多个点上的有功功率符号。在失真电压下工作时,线性负载会针对每个谐波产生有功功率,而且如果客户端存在非线性元件,该功率会进入网络。通过测量污染谐波电压和电流的相位角度,然后计算其差值,可以确定该值。而在此架构中则不必如此,因为谐波功率因数可以提供该信息。

这种DSP架构已在三相电能计量器件上成功实现,它具有如下硬件资源:单MAC架构,工作时钟频率为16 MHz,信号采样速率为8 kHz,具有1k字的数据存储器。所有三相的基波测量结果连续计算,谐波分析仪则能从给定相位(A、B或C)连续提取三个随机谐波值。该架构是可扩展的,某些性能参数已根据已知的电网工作条件进行了优化。

虽然不能一次性提供所有谐波值看起来像缺点,但我们要记住,电网中的谐波污染最重要的影响还是在于准稳现象。实际上,对于工业和商用负载,建议分析至少一周内的谐波污染,而应避免任何零星的测量。在上述前提下,凭借该架构的多功能性,用户可以通过扫描所有三相上的所有可用谐波内容来获取近似FFT的结果。

结束语


在过去,谐波分析仪不仅非常昂贵,而且难以集成到大规模制造的电表中。因此,对电网进行谐波污染分析是一件非常困难的事情,只能偶尔由专业操作员在某些特定位置进行。将更多信号处理功能集成到小型且经济的芯片中将彻底改变这一现状,为更有效地理解和使用电网打开方便之门,让电力公司和消费者均将从中获益。本文介绍的DSP架构现已集成到ADI公司的一款器件中,该器件是ADI电能计量部门针对多相市场推出的最新器件 (ADE7880) 之一。

1 2 3

关键词: DSP架构 数字PLL 数字振荡器

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版