泵站电机交流励磁调速的控制技术介绍

时间:2012-08-22来源:网络

33三相转子电流给定值计算由I2*及θ*易计算出转子电流期望值在dq轴分量:=I2*cosθ*=-I2*sinθ*

已知定子供电角频率为ω1,期望的转子电流角频率为ωs*,采用两相到三相的旋转变换,如图3所示可求得转子三相电流的给定值ia*、ib*、ic*:式中:λ=ωs*t。

采用反馈控制方法,可实现实际转子电流的跟踪控制。

转速调节器可采用常用的比例积分调节器,调节器参数可根据系统响应现场进行调整。

图5软件框图

4控制电路的硬件、软件实现

由于控制电路需要对转子电流幅值、相位进行非线性计算,采用计算机控制是适宜的。考虑到计算量较大且要求计算速度快,因此控制电路采用Intel公司的16位单片机80C196KC[5]为控制核心来实现。

由交交变频主电路图可知,转子绕组电流为正时,应由正组晶闸管导通供电,反之由反组晶闸管导通供电。连接到同一相转子绕组的正反组晶闸管不应该同时导通,否则会造成电源短路,损坏变流设备。因此应根据转子绕组电流的极性来输出或封锁正反组晶闸管的触发脉冲。同理,由于晶闸管关断需要一定时间,在转子绕组电流过零时,应封锁该组的所有触发脉冲。另外,当检测到过流等严重故障时,也应封锁触发脉冲。为提高系统工作的可靠性,设计时从软件、硬件两方面实现了脉冲封锁逻辑。

现场可编程器件PSD813F1内含128k的主快闪存储器,32k的电可擦除存储器及2k随机存储器,内有多达72根输入线的可编程逻辑阵列及其他硬件。使用一片PSD813F1即可满足控制电路对多种类型存储器及主要逻辑功能的要求[6]。

检测电路将定子电压、定子电流及转速、转子电流经隔离、滤波与变换后,变成0~5V的电压信号,由80C196进行采样处理。同时,检测电路通过比较等形成转子各相电流的过零与正负极性信号,这些信号直接送PSD813F1,经其内部可编程的与或逻辑操作,完成对晶闸管触发脉冲的输出与封锁控制。

液晶显示与键盘输入由一片89C51控制,89C51与80C196KC之间采用串行通信联系。

控制电路结构框图如图4所示。

系统软件设计的核心是转速、转子电流闭环控制的实现,主要包括循环执行的主程序与中断程序设计两部分。软件框图如图5所示。

在主程序中完成采样数据处理、转速控制器的程序实现、转子供电参数给定值的计算、转子电流控制器实现及晶闸管触发角的计算等。并根据运行按钮的状态来判断是否终止程序的运行。

中断程序主要包括:

(1)软件定时及模数转换中断

80C196KC中A/D转换一次只需约20μs微秒,间隔200μs可保证将定子电压、定子电流、转子两相电流采样一遍。程序设计时采用软件定时器(HSO8)产生中断,在每隔200μs一次的中断程序中起动A/D转换,利用A/D中断对上述电量依次进行采样,保存采样结果,由主程序处理采样数据。

(2)定时器1溢出—转速测量中断

转速测量使用光电编码器,编码器输出的脉冲信号经整形后直接送80C196KC的定时器2时钟输入端,利用定时器1溢出中断读取定时器2的记数,并复位定时器2,由主程序根据定时器2的记数计算转速。(3)HSIHSO输出触发脉冲中断

晶闸管触发脉冲的输出时刻与转子A相电源的过零点密切相关。硬件设计时将转子A相电源的过零信号送HSI2输入端,电源过零触发HSI中断,在HSI中断程序中完成A组晶闸管触发脉冲的输出,同时起动延时3.3ms的HSO中断,再在中断程序中依次完成B、C组晶闸管触发脉冲的输出。

5结语

由于双馈调速所用变频器的容量与转差率成正比,因此双馈调速在电机功率大、调速范围窄的场合具有明显优势,特别是在泵类负载调速系统中具有广阔应用前景。本文提出的方案综合了速度与无功调节的需要,控制结构简明,具有推广应用价值。

1 2

关键词: 控制 技术 介绍 调速 励磁 电机 交流 泵站

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版