uPD16305在等离子体显示器中的应用介绍

时间:2012-05-09来源:网络

 为了解决高压芯片的散热问题,μPD16305将高压输出对称地放置到芯片的两端;为便于电路的安装、调试,将控制管脚放置到芯片的同一侧。ΜPD16305的功能结构可分为三部分:40位双向移位寄存器、40位锁存器和高压输出功能块。它除了有40路的高压输出以外,还有一个低压的输入和一个低压的输出。并且这两个输入输出端口都是双向的,当一个为输入时,另一个为输出,其输出是移位寄存器输入相连,可以级联驱动40路以上的显示器。对于分辨率为852×480的PDP来说,只需12片μPD16305的主要功能块。

  移位寄存器、锁存器和高压输出块的真值表分别如表1、2、3所示。

  在这三部分电路中,高压输出驱动电路部分是μPD16305芯片的核心部分,它为负载提供了高电压、大电流的输出,高压输出直接驱动PDP屏的显示单元,点亮被选中的象素。图2为μPD16305高压输出驱动电路图。

  图2中,A、B、C三路信号是由同一信号(锁存器输出的信号)经过分离得到的。它们分别输入到高压输出驱动块的三个输入端,其中A和B信号反相,A和C信号同相。

  当A=1、B=0、C=1时,N1、P1、N3导通,N2、P2、P3截止,输出OUT=0;
  当A=0、B=1、C=0时,N2、P2、P3导通,N1、P1、N3截止,输出OUT=VDD2。

  由图可知,这种输出结构不同于普通的互补输出结构。这种电路结构的优点在于:它可以用前级的数字电平,驱动后面的功率级电路,这对于普通的推挽输出结构来说,是根本达不到的。

  对于如图3所示的普通的CMOS互补输出结构,假设VDD2=200V、GND=0V、Vthn=15V、Vthp=-15V。若要使Vout=GND,即要使N管导通、P管截止,就需要满足①Vgs>Vthn;②VDD2-Vgs-Vthp。这样,栅极电压Vgs至少应该等于VDD2+Vdtp,即Vgs至少应为200-15=185V,这就需要在芯片中加入电平转换电路,将CMOS数字电平提升到可以驱动功率管的高电平。对于40路输出的μPD16305来说,可以想象它所点的体积将是巨大的,因而不利于芯片的集成。

2 μPD16305来说,PDP驱动电路中的应用

  μPD16305是一种CMOS结构的高压驱动电路,使用非常灵活。其输入可以是TTL电平,也可以是CMOS电平,高压输出调节范围可从0V~200V。其内部有一内置二极管,此二极管的阳极接在μPD16305的Vss2端,阴极接在μPD16305的VDD2端。由于PDP驱动电极(Y)波形出现有多种电压,所以驱动芯片μPD16305提供稳定、恒定的电源电压是不可能完成该波形的。解决多电源电压的方法是将μPD16305的高压电源和高压地“浮”起来运用,使驱动芯片的电源脚和地脚在不同时刻与同电压相接,从而使芯片输出符合相应的要求。

  在维持期里,所有Y电极的波形完全一致。但在寻址期中扫描寻址时,各行的Y电极有效时间不同,出现有多种电压。所以在维持期和寻址期,可以通过MOS开关管的不同状态,使驱动芯片的电源脚和地脚在不同时刻与不同电压相接,以得到所需要的波形。这种连接方式降低了输出级MOS管上的电压,应用起来有很大余地。

  在驱动PDP时,在维持期和寻址期的初始化阶段,利用的是μPD16305的全高或全低工作状态(可参见表3);而在寻址期的扫描阶段,利用的是μPD16305的移位工作状态,以实现逐行扫描。

1 2 3

关键词: 介绍 应用 显示器 等离子体 uPD16305

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版