基于物联网的厂区路灯模拟控制系统

时间:2012-05-23来源:网络
3.电路设计

  3.1. 信号采集电路

  单元控制器需要对厂区路灯环境实时检测以做出控制决策。选用光敏电阻实现厂区光线明暗变化检测,接口电路设计如图2 所示。光敏电阻与普通电阻串联分压后电压信号传送至单片机进行A/D 转换。随着光线明暗的变化,光敏电阻的阻值也在变化,从而改变PF0 脚的电压,该电压经过单片机片内A/D 转换器转换成数字信号并被分析处理,从而实现对路灯照明照度的控制。

  电路设计如图3 所示,BISS0001 的1 脚信号接高电平,使芯片处于可重复触发工作方式。将热释电传感器的输出信号送入BISS0001 的14 脚,经内部第一级运算放大器放大,然后由C24耦合给内部第二级运算放大器进行放大,再经由内部的电压比较器构成的双向鉴幅器处理后,检出有效触发信号去启动内部延迟时间定时器,最后由芯片的2 脚输出信号V0直接传输至单片机的PD7 脚进行处理,并执行相应的动作。4 脚的输出延迟时间Tx由外部的R35和C28的大小调整,6 脚的触发封锁时间Ti由外部的R34和C29的大小调整。

  图3 热释电红外人体检测电路

  单元控制器通过光敏电阻自动控制路灯的开关状态及灯光的强弱,并与热释电传感器配合,将光照度调节到合适值,使系统运行达到节能、安全的效果。

  2.2. 通信电路设计

  系统中集中控制器向单元控制器发送开/关灯、控制方式等信号; 单元控制器向集中控制器发送故障路灯位置等信息,双方通信通过GPRS无线网络实现。GPRS 模块采用Simcom 公司的SIM300D 无线通信模块,该模块外形小巧,内部集成了TCP /IP 协议,具有射频天线、本地SIM卡连接及RS232 串口等接口,可采用内部扩展的AT 指令进行操作,功能强大且开发简单。

  SIM300D 模块与单片机接口电路如图4 所示,74LS573 逻辑芯片主要用于电压变换。ATmega64输出的是标准TTL 电平,而SIM300D 模块兼容的高电平范围为2. 05 ~ 3. 23 V,若要实现两种芯片之间的数据交换,需要经过电压变换。

  图4 SIM300D无线通信模块与单片机接口电路

  SIM300D 模块需要借助SIM 卡才能连接到网络进行数据传输,SIM300D 模块通过SPI 通信方式对SIM 卡进行读写操作,通过GSM 或GPRS 通信方式实现与移动网络的无缝连接。SIM 卡也称为智能卡、用户身份识别卡,通过此卡鉴别每一路灯的地址、代号和实际地理位置等信息。SIM卡与SIM300D 无线通信模块接口电路设计如图5所示。

  图5 SIM 卡与SIM300D 无线通信模块连接图

  图5 SIM 卡与SIM300D 无线通信模块连接图

  3.3. 故障检测电路设计

  单元控制器设有电流检测功能,通过电流检测可以判断路灯是否故障。如果路灯故障,通过路灯的电流会极小甚至为零,不足以驱动LED 发光,则故障检测点的电压会低于给定的基准电压,通过电压比较电路给单片机送入一个报警信号。

  故障检测模块与单片机接口电路设计如图6所示,基准电压可通过调节滑动变阻器R2的阻值来改变。当路灯正常工作时,故障检测点电压大于基准电压,则运放LM358 输出+ 12 V 的正向饱和电压,该电压经限流电阻和稳压管构成回路,这时稳压管给单片机送入一高电平电压。当路灯出现故障时,检测点电压低于基准电压,运放电路输出为零,为单片机送入一低电平电压,实现故障报警功能。

  图6 故障检测模块与单片机接口电路

  图6 故障检测模块与单片机接口电路

  3.4. 高亮LED 驱动模块

  单元控制器的高亮LED 驱动模块采用自制恒流驱动电源,利用运算放大器组成电压跟随器、电流负反馈电路,结合单片机组合成恒流源,方法简洁,容易实现,电路设计如图7 所示。

  图7 恒流驱动电源电路图

  图7 恒流驱动电源电路图

  图7 中电源的输出电流与UPB5 成正比,当UPB5 保持恒定时,可保证该电源的输出电流恒定。同时,UPB5 可以通过单片机的PWM 输出进行调节,从而实现输出电流的可控,调节LED亮度。

1 2 3

关键词: 模拟 控制系统 路灯 厂区 联网 基于

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版