高级计量体系(AMI)中的智能电能表设计

时间:2012-03-13来源:网络

顶层为主站层,是AMI系统的测量/计量数据管理中心、AMI通信管理中心和电力用户预付费管理中心。
第二层为上行通信层,满足主站与电表、主站与手持终端等远程通信的需求,为电网公司和电力用户提供双向交互的通信信道。
第三层为智能计量与分布式电源接入层,包含智能电能表、智能手持终端、分布式发电系统等设备或装置。
其中,智能电能表作为核心设备主要实现电能计量、需量测量、阶梯电价、费率和时段、冻结、预付费功能、参数设置、事件记录及上报、远程通信、本地通信、数据采集存储、编程、电价计费等功能;智能手持终端辅助主站系统完成现场数据采集、现场售电、现场客户服务等功能;分布式发电系统含电源和并网设备,实现分布式能源接入。
最底层为户内智能终端层,显示终端与智能电能表构成电力用户与电网交互的门户。
1.2 智能电能表在AMI中的作用
在AMI四层结构中,智能电能表发挥着重要作用。智能电能表将有助于在消费者和电力公司之间实现实时通信,使人们能够基于环境和价格的考虑,最大程度地优化能源用量。智能电能表使智能电网具有多层智能,能够实时分析、决策、计划并作出积极的行为。
目前,采用智能电能表不仅可以实现对电能质量进行监测,而且可以通过仪表的网络通信接口实现双向数据远程传输,组成分布式测控网络系统。
智能电能表不但能显示用电量,而且能显示电能价格,能实现连续的带有时标的多种间隔用电计量,而且具有电量冻结功能,可以存储特定时刻的电量数据,比如设定存储月末零点时刻的电量数据,为实行居民用电阶梯电价收费奠定基础。
1.3 智能电能表的工作原理
智能电能表是由测量单元、数据处理单元、通信单元等组成,具有电能量计量、信息存储及处理、实时监测、自动控制、信息交互等功能的电能表。单、三相智能电能表都是多功能意义上的电能表,是在电能计量基础上重点扩展了信息存储及处理、实时监测、自动控制、信息交互等功能。
它的工作原理如下:采用计量芯片或A/D转换器对用户供电电压和电流实时采样,通过MCU进行处理计算,完成峰谷、正反向或四象限电能的计量,并将电量信息等通过显示或通信的方式输出。智能电能表工作原理图如图2所示。

b.jpg



2 智能电能表的硬件设计
2.1 计量芯片设计
对于电能计量芯片,在功能方面除实现基本的电能计量外,还要求能够测量电压、电流(火线及零线)、分相功率、功率因数等电参量。而在性能方面要求具有更高的测量精度、更宽的测量范围及更好的产品一致性。性能的提高要求在设计中计量芯片均采用单独的芯片。计量芯片将来自电压/电流互感器的模拟信号转换为数字信号,并对其进行积分运算,从而精确地获得有功、无功电能,实现防窃电功能、谐波分析等。
2.2 MCU设计
智能电能表含有功能较强的微控制器(MCU),将计算机的CPU,RAM,ROM,定时器/计数器和多种I/O接口集成在一片芯片上,形成芯片级的微计算机。
微控制器依据相应费率和需量等要求对数据进行处理,计算后的结果保存在数据存储器单元中,并可随时向外部接口提供信息和进行数据交换。有MCU的支持,可以方便地实现智能电网供电系统内精确、可靠地管理,不仅可以实现用户清洁能源输送到电网的双向计量、双向通信,而且还可以通过强大的I/O接口,实现智能家电的控制功能。
2.3 通信芯片设计
智能电能表的通信芯片采用可热拔插的通信模块,可采用宽带无线(McWill)、电力线载波(PLC)、无线公网(GPRS)和短距离无线、RS 485、电力红外等方式与智能显示终端、智能手持终端双向通信。支持其他通信技术的无缝接入,模块更换后具备自动识别功能。
2.4 时钟芯片设计
智能电能表复费率、预付费、阶梯电价等多种功能的实现,都需要准确的独立时钟的支撑,应采用具有温度补偿功能的内置硬件时钟电路。常用的如DS3231具有集成的温补晶振(TCXO)和晶体。包含电池输入端,断开主电源时仍可保持精确的计时。集成晶振提高了器件的长期精确度,并减少了生产线的元件数量。其主要特性为0~40℃范围内精度为±2 ppm,-40~+85℃范围内精度为±3~ppm,始终满足约±5 ppm(0.5 s/d)的行业要求。该芯片提供电池备份输入,有效地降低了功耗。

1 2 3

关键词: AMI 计量 智能电能表

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版