半桥LLC谐振转换器的设计技巧及解决方案

时间:2011-09-11来源:网络
能在有限的范围内取值,而且是由变压器的构造(针对所需的功率等级)和匝数比决定。然后,Q因数的计算由所需的额定工作频率fs确定。这之后,k因数也必须计算出来,以确保输出电压稳压(带有线路和负载变化)所需的增益。而在设定k因数时,可以让转换器在轻载时无法维持稳压——可以方便地使用跳周期模式来降低空载功耗。

  对于半桥LLC谐振转换器的设计而言,还涉及到其它的一些重要因素,如初级电流和谐振电容的参数确定、次级整流设计和输出电容参数的确定、谐振电感的平衡性、变压器绕组参数的确定和变压器的制作等。这些进一步的设计信息可以联系安森美半导体获得。

  安森美半导体的半桥LLC谐振转换器解决方案NCP1395/NCP1396

  作为全球领先的高能效电源半导体解决方案供应商,安森美半导体提供的半桥LLC谐振转换器解决方案包括NCP1395和NCP1396控制器。NCP1396是一款更新的器件,内置驱动器。它们均为为构建可靠及稳固的谐振模式开关电源提供了所有必需功能,具有极低的待机能耗。它们的关键特性包括:50kHz至1.0MHz的宽广频率范围(NCP1395)、可调节的死区时间(dead time)、可调节的软启动、可调节的最小和最大频率漂移、低启动电流、欠压检测、可调节的故障定时器间隔和跳周期可能性等。

  NCP1396的独特架构包括一个500kHz的压控振荡器,由于在谐振电路结构中避开谐振尖峰相当重要,因此为了将转换器安排在正确的工作区域,NCP1396内置了可调节且精确的最低开关频率,通过专有高电压技术支持,这款控制器应用在能够接受高达600V本体电压半桥式应用的自举MOSFET驱动电路上。此外,可调整的死区时间可以帮助解决上方与下方晶体管相互传导的问题,同时确保一次端开关在所有负载情况下的零电压转换(ZVS),并轻松实现跳周期模式来改善待机能耗以及空载时的工作效率。

  NCP1396/5具备多重保护功能,提供更好的电路保护,带来更安全的转换器设计而不增加电路的复杂度,NCP1396/5的各种强化保护功能包括有反馈环路失效侦测、快速与低速事件输入,以及可以避免在低输入电压下工作的电源电压过低侦测等。

  面向各种多样化的电源应用设计,NCP1396提供有两种型号选择:A和B。两种型号的不同表现在:

  1. 启动阀值不同,NCP1396A和NCP1396B分别是VCC=13.3V和VCC=10.5V(相应地NCP1395A和NCP1395B分别为VCC=12.8V和VCC=10V);

  2. 在释出快速故障输入时NCP1396A/NCP1395A不会激活软启动功能,而NCP1396B/NCP1395B则会在快速故障输入释出时通过软启动序列恢复工作。

  从设计上来看,NCP1396A/NCP1395A推荐用于大功率消费类应用设计,在这些设计中设计人员能够使用外部启动电阻,而NCP1396B/NCP1395B更适合于工业/医疗应用,这些应用中的12V辅助电源能够直接为芯片供电。

  图6:采用NCP1396A的安森美半导体GreenPoint 220瓦液晶电视电源参考设计。

  本文小结

  输出功率在150~600W之间的液晶电视和等离子电视等应用要求开关电源具有较高的功率密度和平滑的电磁干扰(EMI)信号,而且解决方案元器件数量少、性价比高。虽然开关电源可以采用的拓扑结构众多,但双电感加单电容(LLC)串联谐振转换器在满足这些应用要求方面拥有独特的优势。本文主要分析了半桥LLC谐振转换器的一些重要的设计考虑,如谐振电容和谐振电感的配置、工作状态、建模和增益特性等。此外,还包括其它一些考虑因素,如初级电流和谐振电容的参数确定、次级整流设计和输出电容参数的确定、谐振电感的平衡性、变压器绕组参数的确定和变压器的制作等。本文最后还简要介绍了安森美半导体的两款高能效半桥LLC谐振转换器解决方案NCP1395和NCP1396的主要特性及其应用设计侧重点,方便客户的应用设计,加快产品上市进程。

1 2

关键词: 谐振转换器 NCP1396A NCP1395

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版