一种提高RFID系统中耦合器定向性的方法

时间:2011-08-24来源:网络

f.jpg


从图3中明显可以看出,S11只有很小的变化,这是因为耦合到3,4端口之间耦合线的能量比较小,对输入反射系数影响比较小,而在改进型中,并没有改变除了高阻抗线以外的参数。S31和S41均有变化,尤其是s41变化很明显,从-25 dB变到-51 dB,而S31也有变化,从-19 dB变化到-21 dB。S31的变化主要是因为增加了高阻抗线,3端口的匹配状况发生改变,反射增加了,因此3端口的能量有小幅度下降。S41下降非常明显,到了近乎-51 dB,致使定向性超过30 dB,这是因为高阻抗线的反射抵消。这个定向性已经非常高,超过了市场上绝大多数的定向耦合器的指标,这样的定向耦合器在RFID系统的应用中是很有用的。值得指出的是,虽然应用了这样高性能的耦合器,reader信号仍然比tag信号要大很多,但系统分辨力是增加了,可以识别更小功率的tag散射信号。如果两种信号幅度相差不是特别大,可以在放大器不饱和的条件下得到tag散射信号。
但是从图3中也可以看出耦合器的缺点,最明显的就是高定向性的带宽非常窄,20 dB也只有20 MHz左右,这是因为耦合器本身性能比较差。如果是一个性能本身较好的耦合器,再加上高阻抗线进行调节,可以得到一个比较满意的频率特性。而中间最低的903 MHz处能显示出这么高的定向性,显然是由于在这个频率上,隔离端的漏信号刚好和反射抵消信号是反向的。

3 结论
在RFID系统中,耦合器,环形器等多端口网络是非常重要的部件,主要是用于分离reader和tag信号。但是市场上一般的定向耦合器最多只能达到20 dB的定向性,这样的耦合器很有局限性。应用于RFID系统中,分离tag信号的能力比较弱,或者说,只有在tag信号比较强时才能从信道中分离出。因此需要对其结构进行改进。
理论上的定向耦合器在隔离端的信号强度为0,但是在实际中,由于奇偶模相速度的不平衡,在传输的过程中,奇偶模的分量往往发生改变,隔离端的信号便不为0,甚至很大。在文中提出的那款模型,隔离端泄露的信号强度就非常大,仅仅比耦合端小6 dB左右。为了提高定向性,提出了添加高阻抗线法,这种方法是利用高阻抗线终端的反射信号来抵消隔离端的泄露信号。
高阻抗线的一个重要结论是,其终端到耦合端的电长度大约为90°。根据微带耦合器理论,要达到最佳的耦合效果,耦合端和隔离端的长度大约为90°,信号相位也相差90°。反射信号要与隔离端信号相差180°,在高阻抗线终端反射回耦合端的信号与耦合端原信号必须反向,这样才能在传输90°以后和隔离端的信号正好反向。另外通过改变高阻抗线的线宽,可以调节反射信号的强弱。遵循这一原则,通过对高阻抗线的调节,使得耦合器在903 MHz时,达到-50 dB的隔离度,并使定向性达到30 dB以上。

1 2 3 4

关键词: 定向 方法 耦合 系统 RFID 提高

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版