高压变频器主电路图分析及其应用

时间:2011-07-19来源:网络
3.3 核心关键技术

  (1)高速功率器件的串联技术

  根据查新,世界 各国均未生产出IGBT直接串联的高压变频器。原因正如一些权威人士所言:“IGBT是不能串联的。因为开关时间短,微秒级,很难保证所有管子串联同时开关。否则有的早开,所有的电压都来加在晚开的管子上,那么这个1200V的管子加上6000V,只能烧掉,一烧一串,不可能串联。”

  (2) 正弦波技术

  高压电机对变频器的输出电压波形有严格的要求,是业内人士都知道的常识。解决变频器输出电压波形,从两方面着手:一是优化 PWM波形;二是研制出特种滤波器。

  过去一些人认为:“三电平的电压波形一定优于二电平,今后就是低压变 频器也应采用三电平。”,这种说法可能不太全面。三电平的总谐波含量可能低于二电平,但由于三电平的11次、13次谐波含量特别高,处理起来特别困难,而二电平只要波形优化得好,60次以下的谐波皆可大大降低。而对60次以上的谐波滤波自然容易得多。人们使用三电平是为避免器件串联的困难,不得已而为之。

  (3) 抗共模电压技术

  仅解决IGBT的串联,并不能甩掉输入变压器。原因在于共模电压的存在。在低压变频器领域,近年来发现的电机轴承损坏,共模电压就是影响之一,在高压变频器的领域中,共模电压更是必须解决的关键问题之一。共模电压(也叫零序电压),是指电动机定子绕组的中心点和地之间的电压。

  共模电压也是对外产生干扰的原因,特别是长线传输设备。无论是电流源还是电压源变频器产生共模电压是必然的。技术人员根据共模电压产生的机理,采取了“堵和疏”的办法将共模电压消灭在变频器内部。

  由于采用了上述三项核心关键技术,使IGBT直接高 压变频器的效率达到98%以上。输出电压正弦化、共模电压最小化。适用于任何异步电机、同步电机,无需降容使用,几km的长线传输也无问题。对于传输距离 太长时应考虑线路电压补偿。如提高电压或增大导线截面等。

  4 系统特点:

  (1)电压等级为3kV-10kV;

  (2)系统自带专门设计的高压开关柜,与本身高压变频器高效安全配套,并含变/工频切换装 置和电子式真空断路器;

  (3)全中文操作界面,基于 Windows操作平台,彩色液晶触摸屏,便于就地监控、设定参数、选择功能和调试;

  (3)内置PLC可编程控制器,易于改变和扩展控制逻辑关系;

  (4)高压主电路与低压控制电路采 用光纤传输,安全隔离,使得系统抗干扰能力强;

  (5)控制电路通讯方式采用全数字化通讯;

  (6)系统的 整流单元、逆变单元设计,选用组合模块化积木结构,整机占地面积小、重量轻,便于安装、维护;

  (7)装置可在本机上操作,也可实 现远距离外控,具备完善、方便的操作功能选择;

  (8)系统具有标准的计算机通讯接口RS232或 RS422、RS485,可方便 的与用户DCS系统或工控系统组态建立整个系统的工作站,进一步提高系统的自动化控制程度,实现整个工控系统的全闭环监控,从而获得更加完善的、可靠自动化运行;

  (10)具备全面的故障监测、可靠的故障报警保护功能;

  (11)输入功率因数高,输出电压谐波 含量小,无需功率因数补偿和谐波抑制器;

  (12)输出电压为标准正弦波形,对电缆和电动机的绝缘无损害,减轻电动机的轴承和叶片 等机械部分震动和磨损,延长电动机的使用寿命,输出至电动机的线缆长度可达20km;

  (13)采用独特的抗共模电压技术,使系统*模电压 ≤1000V,无需再提高电动机的绝缘等级,无需专用电机;

  (14)易于实现能量回馈和四象限运行;并可直接引出直流 进行直流输电;

  (15)对用户的高压异步电动机无任何特殊要求。不但适用于新旧异步电动机,也适用于同步电动机。

  5.应用实例

  IGBT直接串联高压变频器在 炼铁厂冲渣泵上的应用

  5.1 应用概况

  永峰钢厂是莱钢集团公司的一个主要生产厂,负责公司所需铁水和铁块冶炼。高炉冶炼铁水过程中产生大量的熔渣,通常是用大流量的中压水将其降温并 冲散,同时输送到水渣池回收,作为炼铁生产的副产品。高炉生产是不间断的,一般情况下每天出铁15次,在高炉出铁前、后各放一次渣,两次出渣时间约 30min,在此时间内要求水冲渣系统的水泵满负荷工作,其余时间水泵只需保持约30%水流量防止管道堵塞即可。4#-高炉使用ZGB-300型冲渣泵,原系统运行时,起动前管道进出水阀门关闭,起动后阀门开度约90%,机组全速运行,电网电压6300V,电机运行电流33A,功率因数81.6%,耗电功率294kW。不需冲渣水时通过调节阀门在30%来调节水流量(此时电机电流25A),耗电功率214kW,一方面导致大量的节能损失,另一方面频繁操作阀门,致使其使用寿命大大降低,增加了停产更换阀门的时间,为此公司决定对4#高炉冲渣泵进行改造。

  5.2 改造方案

  由电机转速公式n=60f×(1-s)/p可知:只要改变电机的频率f,就可以实现电机的转速调节,高电压大功率变频器通过控制IGBT(绝缘栅双极型电力场效应管)的导通和关断,使输出频率连续可调。而且是随着频率的变化,输出电流、电压、功率都将发生变化,即负荷大时转速大, 输出功率大,负荷小时转速小,输出功率也小。

  由流体力学::Q′=Q(n′/n) 、H′=H(n′/n)2 、P′=P(n′/n)3 可知: 当泵机低于额定转速时节电为:E=〔1-(n′/n)3〕×P×T(kWh)

  可见,通过变频改造,冲渣泵流量Q、压力H及轴功率P都将发生较大的改 变,不但节能而且大大提高了设备运行性能。根据冲渣泵的实际特性对其进行了具体改造,冲渣泵在冲渣时工作在49.5Hz,在不冲渣时工作在25Hz,考虑 到工艺对调速精度要求不是很高,本系统只采用开环控制并在高炉值班室操作,需冲渣时给调节系统一个“1”的信号,电机高速运行,不需冲渣时将此信号取消,电机低速运行,取得了很好的节能效果。

  5.3 改造后的系统实际运行状况

  根据18个月的运行,经过反复多种测试各运行参数一直正常,变频器质量性能良好,安全可靠,各项指标均达到了设计要求.

  (1)谐波抑制效果良好。电压谐波含量小于3%,符合 IEEE519-1992和GB/T14549-93标准。

  (2)各种保护功能完善。过流、过压、欠压、故障保 护等功能可靠,并且考虑了外部电网的防雷击等多环节保护功能。

  (3)各种指示功能完备。具有输入、输出电流和电压、运行频率、故障显示、运行状态指示等功能。

  (4)操作简便。同普通的低压变频器的功能操作方式相似,功能设置和调整简单方便。

  5.4 改造效益

  机组49.5Hz运行和无变频器运行相比可节省功率ΔP1=P50-P49.5=80kW;

  机组25Hz运行和无变频器运行相比可节省功率ΔP2=214kW-P25=132kW;

  年节电量:ΔW= (H1ΔP1+H2ΔP2)=365(7.5×80+16.5×132)=1013970kWh;

  (注:每年按365天 计H1:冲渣时间=15×30/60=7.5小时;H2:不冲渣时间=24-7.5=16.5小时);

  经济效益:ΔW电价=1013970×0.56=567823元(注:莱钢厂工业电价0.56元/kWh);

  实现电机软起动功能,延长了电机寿命,大大减少了冲渣泵故障发生率;

  提高了自动化水平,节约了大量工业用水;

  由上述可知,综合经济效益每年可达60多万元,一年即可全部收回成本。

  5.5 结论

  由于IGBT直接串联高压变频器无输入输出变压器、体积小、性价比高、综合性能好等方面均超过了国内外其它产品,是新一代高性能高 压变频产品的代表,为高压变频调速技术在厂内其它工序的技术改造提供了一条可行的途径,在高压变频改造领域具有极大的推广价值。

1 2

关键词: 高压变频器 分析 主电路

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版