第四代无线基础架构的离散式 SerDes 解决方案

时间:2011-07-01来源:网络


对于八天线波束形成LTE系统而言,式3中的SDR会倍增为9.8Gbps。因此,I-Q取样宽度、信道宽度或天线载波数目的增加会直接造成REC与RE之间序列数据速率的提高。搭建基础架构的网络设备制造商应该要了解,在LTE演进中,序列数据速率必须从614.4Mbps的中等速率调整为9.8Gbps或12.2Gbps。DBSA的高SDR需要光纤缆线两端的SerDes发挥更高的效能,才能达到稳定的频率数据复原,并符合CPRI或OBSAI标准的抖动规格。为了进一步了解4G的SerDes及数据处理效用,以下将分析CPRI/OBSAI的通信协议堆栈。


图3a显示CPRI通信协议层堆栈。一般而言,物理层包含不同通信协议都具备的固定功能。CPRI/OBSAI通信协议层的固定功能物理层是以硬件宏(hard marco)的方式进行实作,以达到严格的时序闭合需求。然而,逻辑层则允许客制化。由于新兴的标准演进,以及网络设备制造商期望透过专属功能建立附加价值,使得逻辑层会随之更新。在实作CPRI/OBSAI接口的逻辑层部份时,FPGA通常会提供所需的弹性。FPGA的逻辑项目能够利用程序加以设计,以支持自定义的逻辑层。

图3a CPRI通信协议层堆栈

图3b CPRI通信协议层堆栈(外部SerDes划分)


由于网络设备制造商改采4G部署,因此不仅需要相同弹性来实行逻辑层,也需要强化SerDes效能来满足增加的 SDR。网络设备制造商可选择采购已整合SerDes的FPGA,或选择采购FPGA与离散式SerDes,然后将两者结合(见图3b)。


以下是选择离散式SerDes-FPGA及整合型SerDes-FPGA时必须考虑的几项关键因素:


● 离散式SerDes加上FPGA的成本VS已整合SerDes的FPGA成本


● 离散式SerDes的效能VS整合于FPGA的SerDes效能


● 对于特定FPGA平台的熟悉程度


● 改用整合型SerDes-FPGA所节省的空间


图4显示2G/3G/4G基站或REC连接到分别服务3个区块的3个RE。其中,3个CPRI设定分别为614.4Mbps、3Gbps及9.8Gbps线路速率,并假设9.8Gbps为更新过后的SDR,可支持4G。

图4 连接到3个RE的2G/3G/4G REC


状况A:假设网络设备制造商使用FPGA与离散式SerDes,而且已经在该特定FPGA平台的学习周期中投入时间与资源。若要在此状况下支持9.8Gbps:


● 制造商将SerDes升级,并持续使用同一个熟悉的FPGA平台。优点:达到规模效益,因为图4显示的3个RE区块都能具备类似的FPGA,同时以不同的SDR进行运作。如此一来,制造商便不需要变更FPGA平台而经历学习周期。


状况B:网络设备制造商使用已整合SerDes功能的经济型低阶FPGA。若要在此状况下支持9.8Gbps,制造商有3种选择:


● 改用不同制造商的9.8Gbps高阶FPGA(已整合SerDes)。缺点:成本增加,而且制造商必须经历新FPGA平台的学习周期。


● 改用相同制造商的低价9.8Gbps FPGA(已整合SerDes)。缺点:效能疑虑。


● 向同一个厂商购买不含SerDes的FPGA,并将系统切割为FPGA以及离散式SerDes。优点:制造商改用不含SerDes的FPGA可以节省成本,同时保留熟悉的FPGA平台。此外,使用相同的FPGA可切割出采用离散式SerDes的3个RE区块,进而达到规模效益,就如图4所示。缺点:离散式SerDes加FPGA的解决方案可能需要更多的PCB空间。


状况C:网络设备制造商使用已整合SerDes的高阶FPGA。若要在此状况下支持9.8Gbps,制造商有3种选择:


● 改用相同制造商的9.8Gbps FPGA(已整合SerDes)。缺点:制造商可能必须为具备9.8Gbps SerDes功能的FPGA付出相当高的成本。


● 改用不同制造商的9.8Gbps低阶FPGA(已整合SerDes)。缺点:学习周期、效能疑虑、缺乏降低成本的规模效益。


● 向同一个厂商购买不含SerDes的FPGA,并将系统切割为FPGA及离散式SerDes。优点:与状况B类似。
在9.8Gbps或12Gbps等高SDR的情况下,要满足离散式SerDes设计中对于稳定频率数据复原、抖动容差、信号调节及信号完整性的需求已经相当不容易,更不用说在整合型SerDes-FPGA设计中,数字逻辑项目区块(芯片的大部份)内敏感模拟电路的噪声隔离会造成设计上更大的挑战。有时候,为达到所需的效能,已整合SerDes的FPGA需要高成本的电源供应滤波,并选择使用电压控制的晶体振荡器或成本较低的晶体振荡器。这些需求会增加实施的成本。概括来说,将SerDes整合于FPGA会造成相关的成本,而且当整合难度因为SDR升高而增加时,这些成本也会增加。这正是为何当数据速率在3Gbps或更低的状况下,FPGA加离散式SerDes的解决方案比整合型解决方案更符合成本效益的一个主要原因。

结论
当网络设备制造商建置4G的基础架构时,对于分布式基站架构部署中无线电设备控制及无线电设备之间的高序列数据速率需求将大幅升高。要满足如此需求,光纤缆线两端的SerDeson必须发挥更高的效能。网络设备制造商可将系统切割开来,便能使用同一个熟悉的FPGA平台进行逻辑层处理。为达到高序列数据速率,网络设备制造商可改用离散式 SerDes 解决方案,单独就SerDes部份进行升级。如此的切分可达到所需的效能而不必采用新FPGA平台所需的学习周期,并且有助于提升规模效益,最终能降低制造商的成本。

1 2

关键词: SerDes 解决方案 离散 架构 基础 无线

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章


用户评论

请文明上网,做现代文明人
验证码:
查看电脑版