基于Freescale单片机的电子控制空气悬架模糊PID控制

时间:2011-06-15来源:网络

3 仿真分析

利用MATLAB[4]软件对控制算法进行了仿真,整个系统的采样时间为0.01s。路面激励的时域数学模型可以用来描述,其中q(t)为路面激励,a为某一常数,根据路面等级选取,v为车速,w(t)为白噪声。选用B级和C级路面对悬架系统仿真,车速均为50km/h。在MATLAB/SIMULINK中仿真得到路面的激励[6],如图8、图9所示。

图10、图11分别为B级和C级路面50km/h车速条件下,被动悬架、PID控制和模糊PID控制悬架垂直加速度的对比。可以看出,模糊PID控制悬架与PID控制悬架和被动悬架相比,能有效降低车身垂直加速度。表2和表3为B级和C级路面激励下的悬架性能对比。从表中可以看出,模糊PID控制悬架的各项性能均优于普通PID控制悬架和被动悬架,在B级和C级路面情况下,垂直加速度均方根值分别降低23.4%和17.3%,动行程分别降低1.9%和0.5%,车轮相对动载荷分别降低10%和7.9%,其改善量总体优于普通PID控制的改善量。

本文针对YBL6891H型客车,介绍了空气悬架电子控制单元的电路结构,并用MULTISIM 10对高度传感器检测电路进行了仿真。采用模糊PID控制算法对空气悬架进行控制,并对1/4悬架模型进行了仿真,结果说明,该算法能有效地降低车身垂直加速度,改善了车辆的行驶平顺性和操纵稳定性,在B级和C级路面上,模糊PID控制悬架的加速度均方根比被动悬架分别降低了23.4%和17.3%,动行程和车轮相对动载荷均方根也有所改善。实践证明,该电子控制悬架系统能满足系统的整体要求,达到良好的控制效果。对车身的侧倾角和俯仰角的控制是下一步要做的工作。

1 2

关键词: 空气悬架 阻尼系数 ECAS

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版