电动汽车充电器电路拓扑的设计考虑

时间:2011-02-22来源:网络

当原边开关管S1及S2均开通时,能量储存在输入滤波电感中,同时输出整流管处于关断态。当开关管S1及S2中任一个开关管关断时,储存能量通过原边绕组传输到副边。由于变换器的对称工作,变压器磁通得以复位平衡。

为使输入电感伏秒积平衡,必须满足(1)

VinmaxVB(1-Dmin) (1)

假定变压器匝比为1∶1,最大输入电压为170V,则输出电压为DC 200V时占空比为0.15,输出电压为DC 475V时占空比为0.5。如图5所示,主开关管上的电压应力为2VB。当输出电压为DC 400V时,开关管电压应力是DC 800V,这一电压应力相当高。而且,由于传输电缆和感应耦合器的漏感,器件电压应力可能会更高。为了限制器件最大电压应力,可以采用图5所示的无损吸收电路。但无论是在哪种情况下,都必须采用1200V电压定额的器件。因高耐压的MOSFET的导通电阻较高,导通损耗就会很大。因而,要考虑采用低导通压降的高压IGBT。但IGBT器件开关损耗也限制了开关频率的提高。

开关管的平均电流为

ISavg=ILavg (2)

对于1.5kW功率等级,输入电流有效值为15A,平均开关电流是13A,峰值电流为22A,需要电流定额至少为30A的开关器件。尽管这个方案提供了比较简单的单级功率变换,但也存在一些缺陷,如半导体器件承受的电压应力较高、输出电压调节性能差,输出电流纹波大。

为了降低器件的开关损耗,可以采用图5所示的软开关电路。给MOSFET设计的关断延时确保了IGBT的ZVS关断。在电流上升模式中,MOSFET分担了输出滤波电流,其电压应力为IGBT的一半。从而,可以采用600V的器件。同时,因关断损耗的降低,开关频率得以提高。

另一个降低器件电压定额的方案是采用两级变换结构。前级PFC校正环节可以采用带有软开关功能的Boost变换器,允许高频工作。后级DC/DC功率变换级,可以采用半桥串联谐振变换器,提供高频电流链。图7给出了适用于充电模式1的两级功率变换电路结构图。

图7 充电模式1采用的两级功率变换电路结构

若输入电网电压是AC 115V,为了降低DC/DC变换器的电流定额,输出电压可以提升到DC 450V。这样Boost级功率开关管可以采用500~600V的MOSFET,半桥变换器的开关器件可以采用300~400V的MOSFET。由于采用半桥工作,感应耦合器可以采用1∶2的匝比。若原边绕组为4匝,则副边绕组为8匝。Boost开关管的电流定额是30A,而半桥变换器开关管的电流定额是20A。

4.2 充电模式2

这是电动汽车的一种正常充电模式,充电过程一般在家庭和公共场所进行,要求给使用者提供良好的使用界面。

充电模式2的充电功率等级是6.6kW。230V/30A规格的标准电网电源足以给这种负载供电。其典型的充电时间为5~8h。

与充电模式1中充电功率变换器相类似,充电模式2也可采用单级AC/DC变换器。但由于带PFC功能的单级变换器,开关管的峰值电流很高,因而最好采用两级变换器。其中,PFC级可采用传统的Boost升压型电路,开关管采用软开关或硬开关均可。但为了提高效率,更倾向于选择软开关Boost变换器。图8给出两种采用无损吸收电路的软开管Boost变换器主电路功率级。图9给出两种采用有源开关辅助电路的软开管Boost变换器功率级[7][8]。

(a) 无损吸收电路之一

(b) 无损吸收电路之二

图8 采用无损吸收电路的软开管Boost变换器

(a) ZCT

(b) ZVT

图9 采用有源开关辅助电路的软开管Boost变换器功率级

若电网输入电压为230V,则输出电压可以调节到400V以上。这使得后级变换器的设计变得容易,感应耦合器可以取1∶1的匝比。因此,如果电池最高电压为400V,则前级输出电压可以采用DC450V。

与采用带附加有源开关辅助电路的软开管Boost变换器功率级相比,无损吸收软开管Boost变换器功率级因无需有源器件,因而更具优势。特别是图8(b),因其开关管的关断dv/dt得到了控制,开通为零电压开通,且主开关管上的电压应力为输出电压,因而整机性能得到大大改进。图10给出无损吸收电路的典型波形。

图10 无损吸收电路的典型波形

对于6.6kW的功率定额,450V的输出电压,需要采用600V/60A的MOSFET。可根据应用场合需要,整机设计可选择单模块或多模块并联方案。

对于后级DC/DC变换器,由于输入输出均为容性滤波器,因此,只有具有电流源特性的高频变换器适用。以下几种有大电感与变压器原边相串联的拓扑适合采用。其中一种形式是图11所示的全桥型变换器。

图11 全桥型充电变换器

原边电路中采用串联电感,从而感应耦合器的漏感被有效利用起来,磁化电感也可利用来扩大变换器ZVS的工作范围。对于450V的输入总线电压,可以采用1∶1的匝比,也即原边绕组和副边绕组均采用4匝线圈。

桥式结构的变换器拓扑的缺点之一是峰值电流较高,特别在低压输入时峰值特别高。此外对应轻载时,变换器进入断续工作状态,主开关管的开通损耗增加,调节特性变差。因而,通常要保证一个最小负载电流,确保ZVS。

另一类具有高频电流源特性的变换器拓扑是谐振变换器。文献[8]对这些变换器拓扑进行了分类,分为电流型和电压型。在电流型变换器中,变换器由电流源供电。在这类拓扑中,电流得到有效的控制。但其缺陷是开关管上承受的电压未得到有效控制。因为,大多数功率器件对过流的承受能力比过压的承受能力要强。

1 2 3 4

关键词: 电动汽车 充电器电路 拓扑

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版