在Matlab中实现数字通信FPGA硬件设计

时间:2009-01-16来源:网络

  2 使用System Generator for DSP实现系统级建模

  传统的DSP系统开发人员在设计一个DSP系统时,一般先研究算法,再使用Matlab或C语言验证算法,最后由硬件工程师在FPGA或DSP上实现并验证.典型的DSP系统设计流程如下:

  (1) 用数学语言描述算法.

  (2) 设计环境中使用双精度数实现算法.

  (3) 将双精度运算变为定点运算.

  (4) 将设计转换为有效的硬件实现.

  使用System Generator for DSP可以简化这一过程.设计人员先在Matlab中对系统进行建模和算法验证,经过仿真后便可以直接将系统映射为基于FPGA的底层硬件实现方案.可用Simulink提供的图形化环境对系统进行建模.System Generator for DSP包括被称为Xilinx blockset的Simulink库和模型到硬件实现的转换软件,可以将Simulink中定义的系统参数映射为硬件实现中的实体、结构、端口、信号和属性.另外,System Generator可自动生成FPGA综合、仿真和实现工具所需的命令文件,因此用户可以在图形化环境中完成系统模型的硬件开发.图1为使用System Generator for DSP设计系统的流程图.

  在Matlab中,我们可以通过Simulink的库浏览器使用Xilinx blockset库中的模块,Xilinx blockset库中的模块可以与Simulink其它库中的模块自由组合.Xilinx blockset库中最重要的模块是System Gen-erator,利用该模块可完成系统级设计到基于FPGA的底层硬件设计的转换工作.可以在System Generator模块的属性对话框中选择目标FPGA器件、目标系统时钟周期等选项.System Generator将Xilinx blockset中的模块映射为IP库中的模块,接着从系统参数(例如采样周期)推断出控制信号和电路,再将Simulink的分层设计转换为VHDL的分层网表,之后,System Generator即可调用Xilinx CORE Generator和VHDL模拟、综合、实现工具来完成硬件设计.

在Matlab中实现FPGA硬件设计

  由于一般的FPGA综合工具不支持浮点数,因此System Generator模块使用的数据类型为任意精度的定点数,这样可以实现准确的硬件模拟.由于Simulink中的信号类型是双精度浮点数,因此在Xil-inx模块和非Xilinx模块之间必须插入Gateway In block和Gateway Out block模块.通常Simulink中的连续时间信号在Gateway In block模块中进行采样,同时该模块也可将双精度浮点信号转换为定点信号,而Gateway Out block模块则可将定点信号转换为双精度浮点信号.大部分Xilinx模块能够根据输入信号类型推断输出信号的类型.如果模块的精度参数定义为全精度,则模块将自动选择输出信号类型以保证不损失输入信号精度,并自动进行符号位扩展和补零操作.用户也可以自定义输出信号类型来进行精度控制.

  3 使用中需注意的问题

  在FPGA系统设计中,时钟的设计十分重要.因此必须正确理解System Generator中的时钟和FPGA硬件时钟之间的关系.Simulink中没有明确的时钟源信号,模块在系统参数中定义的采样周期点进行采样.硬件设计中的外部时钟源对时序逻辑电路十分重要.在System Generator模块中,通过定义Simulink System Period和FPGA System Clock Period参数可以建立Simulink采样周期和硬件时钟间的关系,也可通过设置这些参数来改变Simulink中模拟时间和实际硬件系统中时间的比例关系.Simulink的系统周期一般是各模块采样周期的最大公约数.FPGA的硬件时钟是单位为ns的硬件时钟周期.例如,若Simulink中有两个模块,采样周期分别为2s和3s,而FPGA系统时钟周期为10ns,则Simulink系统周期应该为两个模块采样周期的最大公约数即为1s.这意味着Simulink中的1s对应实际硬件系统的10ns.在生成硬件系统前,System Generator将自动检查用户定义的Simulink系统周期参数是否与系统中模块的采样周期相冲突,如果冲突,则提示用修改Simulink系统周期参数.

在Matlab中实现FPGA硬件设计

  有些情况会导致System Generator模块产生不确定数(NaN-not a number).如在双端口RAM模块中,两个端口同时对模块中的某一地址进行写操作时,该地址中的数据将被标记为NaN.如果模块中有不确定数出现,则表明该模块的最终硬件实现将会有不可预测的行为,当Simulink进行仿真时,System Generator将会捕捉该错误.

  4 应用实例

  图2是一个图像处理应用实例的系统实现框图.该应用实例使用5×5的二维FIR滤波器完成图像增强预处理.该系统将输入图像分别延迟0×N(N为输入图像宽度)、1×N、2×N、3×N、4×N个采样点后输入5个Line Buffer,数据在Line Buffer中缓存后并行输入5个5抽头的MAC FIR滤波器.滤波器系统存储于FPGA的块RAM中,图像数据经滤波器处理后输出.图3为Line Buffer实现框图,图4为5×5滤波器框图.

1 2

关键词: Matlab FPGA 数字通信 网络 图像处理

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版