基于左手材料的圆极化贴片天线设计
摘要:基于左手材料的相位特性,提出了利用集总电容、电感加载构造来得到宽带功分移相器,然后利用该功分移相器结合L型金属棒馈电结构来拓展微带天线带宽,从而设计制作工作频率为1.8 GHz、轴比小于3 dB的相对带宽为40%、S11小于-10 dB的相对带宽为32%(1.40-1.95 GHz)的天线设计方法。
关键字:左手微带线;功分器;宽带圆极化贴片天线
O 引言
近年来,随着现代微波通信的发展,宽带圆极化微带天线的发展越来越受到研究者的重视,各种形式的宽带圆极化微带天线层出不穷。而左手材料则以其基于集总电容、电感周期加载结构的形式更被广泛地应用到宽带化、小型化微波器件领域。在有关文献的基础上,设计了一种中心频率为1.8 GHz的宽带90°功分移相器,并通过L型探针结构给微带贴片馈电,从而提高了这种天线的圆极化带宽。
1 天线结构
该天线的结构示意图如图l所示。该天线通过Wilkinson功分移相器将输入能量分成两路幅值相同、相位差为90°的信号。这两路信号通过探针耦合馈电到圆形辐射贴片。这种结构可以在金属棒和天线金属片之间引入更大的容抗,从而可以补偿探针本身带进来的高感抗,进一步增加天线和底板之间的高度。为了尽最大可能增加带宽,本设计引入的混合空气介质层不失为一个非常有效的方法,该方法不但可以方便地得到介电常数为1的空气层,而且可以在普通的介质层上方便的印刷馈电网络。为了扩展天线的圆极化带宽,本文使用了宽带圆极化天线结构,该天线由三部分组成,其中基于介质板的馈电网络层的输入特征阻抗为50Ω,介质板为边长W的正方形;而处在空气层中半径为Rs的L型金属棒的长度为L1,高度为H1,超出天线的边缘距离为S1;第三部分是用于辐射的金属片,其直径为D,离地面的高度为H。
圆形贴片的主模是TMll模,根据上述天线结构,TMll模的场能量集中在空气层。若激励单元的谐振频率为f,激励模式为TMll模。那么,当贴片形状为圆形,激励板半径为a时,则有:
根据上述公式,选择基片的介电常数和厚度,就可以得到需要频率点的初始圆形贴片尺寸。本设计选择基片厚度为0.8 mm,介电常数为2.2的介质板Arlon Diclad 880(tm)做馈电网络的基板,空气层介电常数为l,中心频率为1.8GHz。而在确定圆盘高度时,为了扩展带宽,可将贴片与基板间距离拉大,但是,随着它们之间高度的增大,方向图将不再具有良好的辐射特性,且带宽增加将不再明显,一般可将高度选择在0.1~0.15λ之间,同时为了能让L型金属棒起到更好的馈电作用,这里取H=20 mm(0.11λ)比较合适。通过公式(1)可以得到初始圆形贴片的直径为104 mm。其他参数的取值为:W=180 mm,L1=36 mm,H1=ll mm,Sl=14 mm,Rs=l mm。通过HFSS软件的优化仿真,可得到最佳贴片直径D为76.5 mm。
加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW
或用微信扫描左侧二维码