光学指纹识别让思立微成为 “屏下”焦点

时间:2018-12-20来源:微迷网
       光学和超声“双管齐下”

  思立微以电容触控芯片起家,现已成为平板市场的领头羊。在指纹识别方面,其电容和屏下光学指纹识别芯片都已量产出货,而正在开发中的超声指纹识别芯片也有望于明年投产。面对瞬息万变的市场需求,公司如何做出正确决策并合理分配有限的研发资源?这对于每一个技术型公司都是一个巨大的挑战。当时思立微站在指纹技术的十字路口,面临的残酷现实是新技术并没有明确的方向,而每个可能的方向都需要大量的资源投入。何时可商用,谁都不敢断言,因为这是技术和商业共同作用的结果,巨大的投入也可能一无所获。在屏下超声波与屏下光学两条技术路线上,思立微有超过四个方向并行开发,而且每个方向还分成若干个模块需要去攻关。

  思立微表示,无论何种技术、产品及其产业链都需要时间才能完善。在电容方面,思立微花了3年时间进行自主技术方案的研发和完善;在超声技术方面,思立微也已进行了3年多的摸索,其商业前景将有赖产业链的逐渐完善。而光学指纹识别之所以能在短短2年内投入量产,除了思立微团队的自身努力,与合作伙伴格科微的大力支持也密不可分。现在量产的光学二代指纹是一种等同于微型摄像头模组的结构,是与一代指纹(小孔阵列、准直镜)同步启动开发的。早期客户将电池与光学指纹模组堆叠在一起,对指纹识别模组厚度的要求极其苛刻,只能选择小孔阵列或准直镜。而二代光学指纹方案今年异军突起,主要得益于客户改变了整机堆叠的方式,调整了电池尺寸为指纹模组留出了足够高的光路设计空间。思立微与格科微联手迅速完善了光学二代指纹方案,两家公司都拿出各自的优势,保证了客户的旗舰机型凸显3P镜头的光学透镜屏下指纹识别亮点,并将光学指纹解锁的热潮向前推进了一大步。

  

光学指纹识别让思立微成为 “屏下”焦点

  图二:思立微屏下光学Microlens图(来源:思立微)

  凭借对光学产品的透彻理解,思立微对产品规格做了精准的定义,率先将6.25um大像素、4mm^2大面积区、微透镜阵列与成熟的电容指纹技术结合,推出了业内首颗单芯片光学指纹芯片。优秀的设计不仅省去了外挂芯片,节省了宝贵的整机空间,也大大加快了通讯效率,为实现快速解锁提供了可能。同时,思立微联合信利光电开发出短焦超广角的AA及螺纹调焦技术,做了大量的软件、设备及治具的研发工作,避免客户做屏幕、中框及指纹模组的适配,从而大幅提高了生产效率。

  作为手机产业链上游的关键器件,指纹识别芯片研发周期比较长,公司必须能够看到未来3-5年的技术和市场发展趋势,提前布局才能占据主动。从人机交互和生物体征融合角度考量,相对于其它指纹识别方案,超声的优点在于皮肤穿透性更强,能够进行深层的皮下指纹识别且能够辨别活体,因而可实现安全性更高。此外,超声波方案不易受到油渍和水渍以及强光的干扰,解锁更加稳定可靠。

  业界也认识到超声是指纹识别及多形态人机交互方式的一个重要方向,但其技术难度更大,而且配套的产业链还不成熟。目前只有高通推出了商用的超声指纹识别产品,而思立微已经在超声关键技术上取得突破,其自主研发的超声换能器已通过系列性能测试,在10MHz频点转换效率可达1.5%,表现出优异的性能,已经应用在思立微下一代超声指纹识别芯片的研发中。

  思立微所采用的压电超声换能器(PMUT)利用氮化铝的压电效应进行电能和机械能之间的转换来侦测手指表皮和真皮层的谷脊信息,以做出精确的判断。在进行指纹识别应用时,给超声换能器施加交流电压,超声换能器产生振动,振动向上传输,即超声波向上传输,穿过不同介质层(屏幕,玻璃等)到达手指的谷或者脊,声波遇到脊的表面,部分反射,部分透射,而因为谷中空气的声阻抗远高于脊,所以声波遇到谷时几乎为全反射。从谷和脊反射回来的不同声波能量传到对应的超声换能器表面时,对应的超声换能器会生成不同的电学信号(幅值、频率、相位等)。

  

光学指纹识别让思立微成为 “屏下”焦点

  图三:超声指纹识别原理示意图(来源:思立微)

  通过声学聚焦的方法,将声波聚焦到手指表面,如果遇到手指的脊,部分声波反射回来,其余声波透射进入皮肤,这一部分声波遇到真皮层之后被再次反射回来;所以声波在遇到脊之后会在表皮和真皮层反射回来两个时间不同的信号;而在谷的地方,声波只有一次反射,而且是全反射信号。超声指纹识别方案就是通过这个方法来采集表皮和真皮的指纹信号,从而得到3D的指纹信息。

1 2 3

关键词: 光学指纹 思立微

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版